Chinese Optics Letters, Volume. 19, Issue 6, 060017(2021)

Hybrid mono-crystalline silicon and lithium niobate thin films [Invited] Editors' Pick

Houbin Zhu, Qingyun Li, Huangpu Han, Zhenyu Li, Xiuquan Zhang, Honghu Zhang, and Hui Hu*
Author Affiliations
  • School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • show less
    References(40)

    [1] R. S. Weis, T. K. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 37, 191(1985).

    [2] L. Arizmendi. Photonic applications of lithium niobate crystals. Phys. Status Solidi A, 201, 253(2004).

    [3] M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, H. Bakhru. Fabrication of single crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett., 73, 2293(1998).

    [4] G. Poberaj, H. Hu, W. Sohler, P. Gunter. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev., 6, 488(2012).

    [5] A. Guarino, G. Poberaj, D. Rezzonico, P. Gunter. Electro-optically tunable microring resonators in lithium niobate. Nat. Photon., 1, 407(2007).

    [6] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Loncar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).

    [7] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).

    [8] J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, J. Xu. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express, 23, 23072(2015).

    [9] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Loncar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [10] A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, D. W. Prather. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express., 26, 14810(2018).

    [11] T. Kovalevich, A. Ndao, M. Suarez, S. Tumenas, Z. Balevicius, A. Ramanavicius, I. Baleviciute, M. Hayrinen, M. Roussey, M. Kuittinen. Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films. Opt. Lett., 41, 5616(2016).

    [12] H. Liang, R. Luo, Y. He, H. Jiang, Q. Lin. High-quality lithium niobate photonic crystal nanocavities. Optica, 4, 1251(2017).

    [13] G. Shao, Y. Bai, G. Cui, C. Li, X. Qiu, D. Geng, D. Wu, Y. Lu. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses. AIP Adv., 6, 075011(2016).

    [14] L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, J. E. Bowers. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531(2016).

    [15] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, M. Loncar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438(2018).

    [16] B. N. Slautin, A. P. Turygin, E. D. Greshnyakov, A. R. Akhmatkhanov, H. Zhu, V. Y. Shur. Domain structure formation by local switching in the ion sliced lithium niobate thin films. Appl. Phys. Lett., 116, 152904(2020).

    [17] Y. Niu, C. Lin, X. Liu, Y. Chen, X. Hu, Y. Zhang, X. Cai, Y. Gong, Z. Xie, S. Zhu. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).

    [18] Y. Liu, X. Yan, J. Wu, B. Zhu, Y. Chen, X. Chen. On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron., 64, 234262(2021).

    [19] Q. Luo, Z. Hao, C. Yang, R. Zhang, D. Zheng, S. Liu, H. Liu, F. Bo, Y. Kong, G. Zhang, J. Xu. Microdisk lasers on an erbium-doped lithium-niobite chip. Sci China Phys. Mech. Astron., 64, 234263(2021).

    [20] D. Yin, Y. Zhou, Z. Liu, Z. Wang, H. Zhang, Z. Fang, W. Chu, R. Wu, J. Zhang, W. Chen, M. Wang, Y. Cheng. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator. Opt. Lett., 46, 2127(2021).

    [21] Z. Chen, Q. Xu, K. Zhang, W. Wong, D. Zhang, E. Y. B. Pun, C. Wang. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett., 46, 1161(2021).

    [22] X. Yan, Y. Liu, J. Wu, Y. Chen, X. Chen. Integrated spiral waveguide amplifiers on erbium-doped thin-film lithium niobate(2021).

    [23] M. Bruel. Silicon on insulator material technology. Electron. Lett., 31, 1201(1995).

    [24] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678(2006).

    [25] R. Soref, J. Larenzo. All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE J. Quantum Electron., 22, 873(1986).

    [26] V. Donzella, A. Sherwali, J. Flueckiger, S. M. Grist, S. T. Fard, L. Chrostowski. Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides. Opt. Express, 23, 4791(2015).

    [27] T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, M. Hochberg. Myths and rumours of silicon photonics. Nat. Photon., 6, 206(2012).

    [28] L. Chen, J. Chen, J. Nagy, R. M. Reano. Highly linear ring modulator from hybrid silicon and lithium niobate. Opt. Express, 23, 13255(2015).

    [29] P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, S. Mookherjea. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express, 26, 23728(2018).

    [30] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit/s and beyond. Nat. Photon., 13, 359(2019).

    [31] Y. Wang, Z. Chen, L. Cai, Y. Jiang, H. Zhu, H. Hu. Amorphous silicon-lithium niobate thin film strip-loaded waveguides. Opt. Mater. Express, 7, 4018(2017).

    [32] Y. Wang, Z. Chen, H. Hu. Analysis of waveguides on lithium niobate thin films. Crystals, 8, 191(2018).

    [33] H. Han, B. Xiang. Simulation and analysis of electro-optic tunable microring resonators in silicon thin film on lithium niobate. Sci. Rep., 9, 6302(2019).

    [34] N. Goto, G. L. Yip. Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid. Appl. Opt., 28, 60(1989).

    [35] S. Y. Zhu, G. Q. Lo, D. L. Kwong. Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability. Opt. Express, 18, 25283(2010).

    [36] L. Cai, S. Li, H. Han, H. Hu. Waveguides in single-crystal lithium niobate thin film by proton exchange. Opt. Express, 23, 1240(2015).

    [37] D. Fink, J. Krauser, D. Nagengast. Hydrogen implantation and diffusion in silicon and silicon dioxide. Appl. Phys. A, 61, 381(1995).

    [38] B. Wang, B. Gu, H. Zhang, X. Feng. Molecular dynamics simulation on hydrogen ion implantation process in smart-cut technology. Acta. Mech. Solida Sin., 29, 111(2016).

    [39] H. Hu, R. Ricken, W. Sohler. Lithium niobate photonic wires. Opt. Express, 17, 24261(2009).

    [40] I. D. Wolf, C. Jian, W. Spengen. The investigation of microsystems using Raman spectroscopy. Opt. Laser Eng., 36, 213(2001).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Houbin Zhu, Qingyun Li, Huangpu Han, Zhenyu Li, Xiuquan Zhang, Honghu Zhang, Hui Hu, "Hybrid mono-crystalline silicon and lithium niobate thin films [Invited]," Chin.Opt.Lett. 19, 060017 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue on Lithium Niobate Based Photonic Devices

    Received: Feb. 24, 2021

    Accepted: May. 24, 2021

    Published Online: Jun. 21, 2021

    The Author Email: Hui Hu (hhu@sdu.edu.cn)

    DOI:10.3788/COL202119.060017

    Topics