Journal of Applied Optics, Volume. 40, Issue 5, 805(2019)
Super-resolution simplification network based on densely connected structure
[2] [2] DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]∥Computer Vision – ECCV 2014. Cham: Springer International Publishing, 2014: 184-199.
[4] [4] ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, June 18-23, 2018[C]. USA: IEEE, 2018.
[5] [5] YANG J C, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches: 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, June 23-28, 2008[C]. USA: IEEE, 2008.
[6] [6] FREEMAN W T, JONES T R, PASZTOR E C. Example-based super-resolution[J]. IEEE Computer Graphics and Applications 2002, 22(2): 56-65.
[7] [7] CHANG H, YEUNG D Y, XIONG Y. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].USA: IEEE, 2004.
[8] [8] YANG J, WRIGHT J, HUANG T, MA Y. Image super-resolution as sparse representation of raw image patches: 2008 IEEE Conference on Computer Vision and Pattern Recognition , Anchorage, June 23-28, 2008[C].USA: IEEE, 2008.
[9] [9] YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing 2010, 19(11): 2861-2873.
[10] [10] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]∥Proceedings of the 7th international conference on Curves and Surfaces, Heidelberg: Springer , 2010: 711-730.
[12] [12] TIMOFTE R, DE SMET V, VAN GOOL L. Anchored neighborhood regression for fast example-based super-resolution[C]∥2013 IEEE International Conference on Computer Vision .USA: IEEE, 2013: 1920–1927
[13] [13] DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]∥Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 391-407.
[14] [14] SHI W Z, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, June 27-30, 2016[C].USA: IEEE, 2016.
[15] [15] HUANG G, LIU Z, MAATEN L V D, et al. Densely Connected Convolutional Networks [C]∥Proceedings on Computer Vision and Pattern Recognition.USA: arXiv, 2018.
[16] [16] TAI Y, YANG J, LIU X, et al. MemNet: a persistent memory network for image restoration [C]∥2017 IEEE International Conference on Computer Vision.USA: IEEE, . 2017: 4549-4557.
[17] [17] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, July 21-26, 2017[C].USA: IEEE, 2017.
[18] [18] Zhang Y, Tian Y, Kong Y, et al. Residual Dense Network for Image Super-Resolution [C]∥Proceedings on Computer Vision and Pattern Recognition . USA: arXiv, 2018.
Get Citation
Copy Citation Text
GAO Fei, LEI Tao, LIU Xianyuan, CHEN Lianghong, JIANG Ping. Super-resolution simplification network based on densely connected structure[J]. Journal of Applied Optics, 2019, 40(5): 805
Category:
Received: Jan. 16, 2019
Accepted: --
Published Online: Nov. 5, 2019
The Author Email: