Optics and Precision Engineering, Volume. 32, Issue 4, 622(2024)

Multi-spectral image compression by fusing multi-scale feature convolutional neural networks

Lili ZHANG... Zikun CHEN*, Tianpeng PAN and Lele QU |Show fewer author(s)
Author Affiliations
  • College of Electronic and Information Engineering, Shenyang Aerospace University, Shenyang110136, China
  • show less
    Figures & Tables(18)
    Multi-scale spatial inter-spectral feature extraction network structure
    MSSA module structure
    Group convolution schematic
    Spacial and spectral residual blocks
    Schematic diagram of the three convolution modes of SSC
    SSC Module Structure
    MSSA module test results
    SSC module test results
    PSNR metrics and MSA metrics for 7-band data
    PSNR metrics and MSA metrics for 8-band data
    Schematic of reconstructed image from Landsat-8 dataset
    Schematic of reconstructed image from Sentinel-2 dataset
    • Table 1. PSNR metrics for MSSA modules with different convolutional kernel sizes

      View table
      View in Article

      Table 1. PSNR metrics for MSSA modules with different convolutional kernel sizes

      Spectral Spacial(5,7)(5,9)(7,9)
      (5,7)47.8647.6547.49
      (5,9)47.7847.4547.62
      (7,9)47.2147.3647.55
    • Table 2. MSA metrics for MSSA modules with different convolutional kernel sizes

      View table
      View in Article

      Table 2. MSA metrics for MSSA modules with different convolutional kernel sizes

      Spectral Special(5,7)(5,9)(7,9)
      (5,7)15.516.515.9
      (5,9)15.816.216.0
      (7,9)16.716.516.1
    • Table 3. PSNR metrics and MSA metrics for SSC modules with different numbers of SSC modules

      View table
      View in Article

      Table 3. PSNR metrics and MSA metrics for SSC modules with different numbers of SSC modules

      Performance numberPSNR/dBMSA/(×10-3 rad)
      K=247.3415.9
      K=348.1115.4
      K=447.9215.7
    • Table 4. PSNR, MSA metrics under 7-band test set

      View table
      View in Article

      Table 4. PSNR, MSA metrics under 7-band test set

      MethodBit ratePSNR/dBMSA/(×10-3 rad)MethodBit ratePSNR/dBMSA/(×10-3 rad)
      Scale-only130.1745.5943.2Joint140.1645.8939.8
      0.2746.3737.20.2546.3231.3
      0.3746.6529.30.3147.1428.3
      0.4247.4924.80.4647.4921.6
      0.5247.8222.20.5547.9619.5
      Mean&Scale130.1244.1357.83D-SPIHT90.1438.2562.9
      0.2345.8542.00.2539.648.7
      0.3246.3434.30.3340.3840.9
      0.4347.1621.60.4441.9231.6
      0.5247.2819.50.5043.123.5
      JPEG200080.1236.3258.8本文方法0.1446.437.4
      0.2337.652.90.2547.0828.2
      0.3238.3147.00.3547.621.2
      0.4339.8236.90.4448.0916.1
      0.5240.7234.80.5348.7315.2
    • Table 5. PSNR, MSA metrics under 8-band test set

      View table
      View in Article

      Table 5. PSNR, MSA metrics under 8-band test set

      MethodBit ratePSNR/dBMSA/(×10-3 rad)MethodBit ratePSNR/dBMSA/(×10-3 rad)
      Scale-only130.1159.9518.8Joint140.1260.1816.7
      0.1960.7117.40.2361.6015.7
      0.3262.0216.10.3762.5615.3
      0.4262.2615.30.4662.7415.2
      0.5562.3015.00.5562.8915.1
      Mean&Scale130.1454.0817.33D-SPIHT90.1237.3421.4
      0.2558.5316.50.2338.7420.1
      0.3362.2215.40.3740.2318.9
      0.4462.8014.90.4640.7417.6
      0.5062.9614.50.5541.3416.4
      JPEG200080.1131.8446.2本文方法0.1260.6316.3
      0.1932.4645.00.2461.8415.3
      0.3233.1443.50.3562.9114.8
      0.4233.9540.50.4663.2814.3
      0.5534.1939.30.5363.4114.1
    • Table 6. Codec time and computation for each algorithm

      View table
      View in Article

      Table 6. Codec time and computation for each algorithm

      Methods

      Enc time

      /ms

      Dec time

      /ms

      FLOPs

      /G

      本文方法62.739.1337.8
      Scale-only1336.535.454.1
      Mean & Scale1337.236.855.1
      Joint141 755.85 986.4110.8
    Tools

    Get Citation

    Copy Citation Text

    Lili ZHANG, Zikun CHEN, Tianpeng PAN, Lele QU. Multi-spectral image compression by fusing multi-scale feature convolutional neural networks[J]. Optics and Precision Engineering, 2024, 32(4): 622

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 20, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: CHEN Zikun (chenzikun1@stu.sau.edu.com)

    DOI:10.37188/OPE.20243204.0622

    Topics