Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316006(2023)

Personal Radiative Cooling Textile Generation

Xiran Du, Xueyang Wang, and Bin Zhu*
Author Affiliations
  • Photothermal Manipulation Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210033, Jiangsu, China
  • show less
    References(32)

    [1] Chan A P C, Yi W. Heat stress and its impacts on occupational health and performance[J]. Indoor and Built Environment, 25, 3-5(2016).

    [2] Zhu F L, Feng Q Q. Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments[J]. International Journal of Thermal Sciences, 165, 106899(2021).

    [3] Liu Y, Pan D, Chen W et al. Radiative heat transfer in nanophotonics: from thermal radiation enhancement theory to radiative cooling applications[J]. Acta Physica Sinica, 69, 036501(2020).

    [4] Peng Y C, Cui Y. Advanced textiles for personal thermal management and energy[J]. Joule, 4, 724-742(2020).

    [5] Ma Z, Zhao D, She C et al. Personal thermal management techniques for thermal comfort and building energy saving[J]. Materials Today Physics, 20, 100465(2021).

    [6] Peng L H, Su B, Yu A B et al. Review of clothing for thermal management with advanced materials[J]. Cellulose, 26, 6415-6448(2019).

    [7] Liang J, Wu J W, Guo J et al. Radiative cooling for passive thermal management towards sustainable carbon neutrality[J]. National Science Review, 10, nwac208(2023).

    [8] Tong J K, Huang X P, Boriskina S V et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics, 2, 769-778(2015).

    [9] Hsu P C, Song A Y, Catrysse P B et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 353, 1019-1023(2016).

    [10] Yang A K, Cai L L, Zhang R F et al. Thermal management in nanofiber-based face mask[J]. Nano Letters, 17, 3506-3510(2017).

    [11] Catrysse P B, Song A Y, Fan S H. Photonic structure textile design for localized thermal cooling based on a fiber blending scheme[J]. ACS Photonics, 3, 2420-2426(2016).

    [12] Peng Y C, Chen J, Song A Y et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability, 1, 105-112(2018).

    [13] Li Z Z, Chen Q Y, Song Y et al. Fundamentals, materials, and applications for daytime radiative cooling[J]. Advanced Materials Technologies, 5, 1901007(2020).

    [14] Zhang Q, Wang S H, Wang X Y et al. Recent progress in daytime radiative cooling: advanced material designs and applications[J]. Small Methods, 6, 2101379(2022).

    [15] Zhao D L, Aili A, Zhai Y et al. Radiative sky cooling: fundamental principles, materials, and applications[J]. Applied Physics Reviews, 6, 021306(2019).

    [16] Cai L L, Song A Y, Li W et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 30, 1802152(2018).

    [17] Cui Y, Luo X Y, Zhang F H et al. Progress of passive daytime radiative cooling technologies towards commercial applications[J]. Particuology, 67, 57-67(2022).

    [18] Zeng S N, Pian S J, Su M Y et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 373, 692-696(2021).

    [19] Zhu B, Li W, Zhang Q et al. Subambient daytime radiative cooling textile based on nanoprocessed silk[J]. Nature Nanotechnology, 16, 1342-1348(2021).

    [20] Zhang X P, Cheng Z M, Yang D L et al. Scalable bio-skin-inspired radiative cooling metafabric for breaking trade-off between optical properties and application requirements[J]. ACS Photonics, 10, 1624-1632(2023).

    [21] Cai L L, Peng Y C, Xu J W et al. Temperature regulation in colored infrared-transparent polyethylene textiles[J]. Joule, 3, 1478-1486(2019).

    [22] Wang X Y, Zhang Q, Wang S H et al. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence[J]. Science Bulletin, 67, 1874-1881(2022).

    [23] Fang Y S, Chen G R, Bick M et al. Smart textiles for personalized thermoregulation[J]. Chemical Society Reviews, 17, 9357-9374(2021).

    [24] Chai J L, Kang Z X, Yan Y S et al. Thermoregulatory clothing with temperature-adaptive multimodal body heat regulation[J]. Cell Reports Physical Science, 3, 100958(2022).

    [25] Zhang X S, Yang W F, Shao Z W et al. A moisture-wicking passive radiative cooling hierarchical metafabric[J]. ACS Nano, 16, 2188-2197(2022).

    [26] Cai L L, Song A Y, Wu P L et al. Warming up human body by nanoporous metallized polyethylene textile[J]. Nature Communications, 8, 496(2017).

    [27] Hsu P C, Liu C, Song A Y et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances, 3, e1700895(2017).

    [28] Hu R, Liu Y D, Shin S et al. Emerging materials and strategies for personal thermal management[J]. Advanced Energy Materials, 10, 1903921(2020).

    [29] Zhang X A, Yu S J, Xu B B et al. Dynamic gating of infrared radiation in a textile[J]. Science, 363, 619-623(2019).

    [30] Li X Q, Ma B R, Dai J Y et al. Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management[J]. Science Advances, 7, eabj7906(2021).

    [31] Lei L Q, Shi S, Wang D et al. Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives[J]. ACS Nano, 17, 1803-1830(2023).

    [32] Yao P C, Chen Z P, Liu T J et al. Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling[J]. Advanced Materials, 34, 2208236(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xiran Du, Xueyang Wang, Bin Zhu. Personal Radiative Cooling Textile Generation[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: May. 29, 2023

    Accepted: Jun. 19, 2023

    Published Online: Jul. 25, 2023

    The Author Email: Zhu Bin (binzhu@nju.edu.cn)

    DOI:10.3788/LOP231396

    Topics