Opto-Electronic Engineering, Volume. 51, Issue 1, 230290-1(2024)

Image super-resolution reconstruction based on active displacement imaging

Wenxue Zhang1...2,3,4, Yihan Luo1,2,3,4,*, Yaqing Liu1,2,3, Shiye Xia1,2,3, and Kaiyuan Zhao1,2,34 |Show fewer author(s)
Author Affiliations
  • 1National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 2Key Laboratory of Beam Control, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 3Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(26)
    The image degradation process
    Schematic diagram of up-sampling based on micro-scanning
    Three ways of micro-scanning
    Schematic diagram of reconstruction based on micro-scanning imaging
    Flow chart of our algorithm
    Schematic diagram of the experimental setup
    Schematic diagram of selection module. Left: Image sequence; Right: An image grid with complete sub-pixel information
    Four cases of displacement. (a) Four possible cases of pixel shift; (b) Four modes of integer pixel shift
    Schematic diagrams of information extraction in four integer pixel shift cases
    Schematic diagram of denoise module. (a) Schematic of matching same pixel of multiple images; (b) Pixel value and noise points (red circle) of same pixels
    Experiment sets of the active displacement imaging method
    Camera position (red point)
    Comparison result between ground truth and calculation. (a) Comparison result at 25 points; (b) Comparison of error at 25 points
    Super-resolution reconstruct results of different algorithms at scale of 4. (a) MFPOCS[20]; (b) ACNet[6]; (c) Ours
    MTF curves of different algorithms at different scales
    Original pictures and their ROI (red rectangle). (a) Simple image; (b) Complex image; (c) Panda image
    Comparison of the traditional interpolation and our interpolation at 4 times. (a) Ground truth; (b) Ours; (c) Linear; (d) Bicubic
    Super-resolution reconstruction results of simple image at different scales using the algorithms of MFPOCS[20](yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)
    Super-resolution reconstruction results of ROI of simple image at different scales using the algorithm of MFPOCS[20] (yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)
    Super-resolution results of the complex image using the algorithms of MFPOCS[20] (yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)
    Super-resolution reconstruction results of panda image at different scales using the algorithms of MFPOCS[20](yellow rectangle), ACNet[6](green rectangle) and ours (red rectangle)
    Super-resolution reconstruction results of the complex image at different scales using the algorithms of MFPOCS[20] (yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)
    Super-resolution reconstruction results of ROI of panda image at different scales using the algorithms of MFPOCS[20](yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)
    • Table 1. SSIM of three algorithms

      View table
      View in Article

      Table 1. SSIM of three algorithms

      ImagesScale2345
      Simple imagePOCS[20]0.84930.80930.85680.8330
      ACNet[6]0.98760.97640.96230.9418
      Ours0.99210.96940.99490.9778
      Complex imageMFPOCS[20]0.68380.65390.68800.6714
      ACNet[6]0.94620.89260.80510.7358
      Ours0.95170.91830.95920.9250
      PandaMFPOCS[20]0.62630.61870.57480.5653
      ACNet[6]0.70460.67890.60140.5736
      Ours0.66960.62150.62550.6002
    • Table 2. PSNR of three algorithms

      View table
      View in Article

      Table 2. PSNR of three algorithms

      ImagesScale2345
      Simple imageMFPOCS[20]29.439026.423229.486826.4090
      ACNet[6]47.712543.635839.259336.5734
      Ours46.788345.572343.969939.1457
      Complex ImageMFPOCS[20]20.267220.129320.127020.1398
      ACNet[6]29.152127.745324.196121.9834
      Ours27.442429.539628.933226.6562
      PandaMFPOCS[20]24.072522.321520.437619.8857
      ACNet[6]25.761723.516919.504818.3985
      Ours24.003123.191521.975121.7718
    • Table 3. Mean gradient of three algorithms

      View table
      View in Article

      Table 3. Mean gradient of three algorithms

      ImagesScale2345
      Simple imageMFPOCS[20]314.7994211.4553131.7388105.3359
      ACNet [6]338.4507294.9276201.8644145.9228
      Ours320.5050265.3140215.9100184.1190
      Complex ImageMFPOCS[20]350.7845242.5359162.4356129.1925
      ACNet [6]471.1172395.2651275.1865216.5397
      Ours446.9067383.5727350.1874314.0308
      PandaMFPOCS[20]214.7590147.402691.817577.1331
      ACNet [5]271.9497263.0891191.2695163.3797
      Ours253.5610389.1927497.7272205.6040
    Tools

    Get Citation

    Copy Citation Text

    Wenxue Zhang, Yihan Luo, Yaqing Liu, Shiye Xia, Kaiyuan Zhao. Image super-resolution reconstruction based on active displacement imaging[J]. Opto-Electronic Engineering, 2024, 51(1): 230290-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Nov. 27, 2023

    Accepted: Feb. 2, 2024

    Published Online: Apr. 19, 2024

    The Author Email: Luo Yihan (罗一涵)

    DOI:10.12086/oee.2024.230290

    Topics