Chinese Journal of Quantum Electronics, Volume. 38, Issue 3, 332(2021)

Quantum recommendation algorithm based on Hamming distance

Menghan CHEN*... Gongde GUO and Song LIN |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(32)

    [1] [1] Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning[J]. Contemporary Physics, 2015, 56(2): 172-185.

    [2] [2] Dunjko V, Briegel H J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress[J]. Reports on Progress in Physics, 2018, 81(7): 074001.

    [3] [3] Dai J, Li Z Q, Pan S H, et al. Deutsch-Jozsa algorithm realization based on IBM Q[J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 202-209.

    [5] [5] Cao D. Cluster states quantum fuzzy hashing and covert information search[J]. Chinese Journal of Quantum Electronics, 2015, 32(1): 58-68.

    [6] [6] Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303-332.

    [7] [7] Grover L K. Quantum mechanics helps in serching for a needle in a haystack[J]. Physical Review Letters, 1997, 79(2): 325-328.

    [8] [8] Biamonte J, Wittek P, Pancotti N, et al. Quantum machine learning[J]. Nature, 2017, 549(7671): 195-202.

    [9] [9] Liu N N, Rebentrost P. Quantum machine learning for quantum anomaly detection[J]. Physical Review A, 2018, 97(4): 042315.

    [10] [10] Harrow A W, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations[J]. Physical Review Letters, 2009, 103(15): 150502.

    [11] [11] Wossnig L, Zhao Z K, Prakash A. A quantum linear system algorithm for dense matrices[J]. Physical Review Letters, 2017, 120(5): 050502.

    [12] [12] Wang G M. Quantum algorithm for linear regression[J]. Physical Review A, 2017, 96(1): 012335.

    [13] [13] Zhang D B, Xue Z Y, Zhu S L, et al. Realizing quantum linear regression with auxiliary qumodes[J]. Physical Review A, 2019, 99(1): 012331.

    [14] [14] Lin J, Bao W S, Zhang S, et al. An improved quantum principal component analysis algorithm based on the quantum singular threshold method[J]. Physics Letters A, 2019, 383(24): 2862-2868.

    [15] [15] Fan D C, Song Z L, Jon S, et al. An improved quantum clustering algorithm with weighted distance based on PSO and research on the prediction of electrical power demand[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(2): 2359-2367.

    [16] [16] Guo G D, Yu K, Wang H, et al. Quantum hierarchical agglomerative clustering based on one dimension discrete quantum walk with single-point phase defects[J]. Computers, Materials & Continua, 2020, 65(2): 1397-1409.

    [17] [17] Yu K, Guo G D, Li J, et al. Quantum algorithms for similarity measurement based on Euclidean distance[J]. International Journal of Theoretical Physics, 2020, 59(10): 3134-3144.

    [18] [18] Xu Y Z, Guo G D, Cai B B, et al. Quantum clustering algorithm based on one-dimensional three-state quantum walk[J]. Computer Science, 2016, 43(3): 80-83.

    [19] [19] Chen S L, Huang C H. Construction of continuous-variable coherent state quantum neural network model[J]. Chinese Journal of Quantum Electronics, 2017, 34(4): 467-472.

    [21] [21] Chen Y, Li X, Liu J, et al. Recommendation system for adaptive learning[J]. Applied Psychological Measurement, 2018, 42(1): 24-41.

    [22] [22] Wei J, He J, Chen K, et al. Collaborative filtering and deep learning based recommendation system for cold start items[J]. Expert Systems With Applications, 2017, 69(9): 29-39.

    [23] [23] Tarus J K, Niu Z D, Mustafa G M, et al. Knowledge-based recommendation: A review of ontology-based recommender systems for e-learning[J]. Artificial Intelligence Review, 2018, 50(1): 21-48.

    [24] [24] Sawerwain M, Wróblewski M. Recommendation systems with the quantum k-NN and Grover algorithms for data processing[J]. International Journal of Applied Mathematics and Computer Science, 2019, 29(1): 139-150.

    [25] [25] Ruan Y, Xue X L, Liu H, et al. Quantum algorithm for K-nearest neighbors classification based on the metric of Hamming distance[J]. International Journal of Theoretical Physics, 2017, 56(11): 3496-3507.

    [26] [26] Linke N M, Maslov D, Roetteler M, et al. Experimental comparison of two quantum computing architectures[J]. PNAS, 2017, 114(13): 3305-3310.

    [27] [27] Zulehner A, Paler A, Wille R, et al. An efficient methodology for mapping quantum circuits to the IBM QX architectures[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(7): 1226-1236.

    [28] [28] Kaye P. Reversible addition circuit using one ancillary bit with application to quantum computing[J]. arXiv: quant-ph/0408173, 2004.

    [29] [29] Bang J, Dutta A, Lee S, et al. Optimal usage of quantum random access memory in quantum machine learning[J]. Physical Review A, 2019, 99(1): 012326.

    [30] [30] Brassard G, Hoyer P, Mosca M. Quantum amplitude amplification and estimation[J]. arXiv: quant-ph/0005055, 2000.

    [31] [31] Rastegin A E. On the role of dealing with quantum coherence in amplitude amplification[J]. Quantum Information Processing, 2018, 17(7): 179-194.

    [32] [32] Yu C H, Gao F, Wang Q L, et al. Quantum algorithm for association rules mining[J]. Physical Review A, 2016, 94(4): 042311.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Menghan, GUO Gongde, LIN Song. Quantum recommendation algorithm based on Hamming distance[J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 332

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 4, 2021

    Accepted: --

    Published Online: Sep. 3, 2021

    The Author Email: Menghan CHEN (1446514387@qq.com)

    DOI:10.3969/j.issn.1007-5461.2021.03.009

    Topics