Acta Optica Sinica, Volume. 41, Issue 15, 1528001(2021)

Stability of CO2 Gas Sensor Based on Hollow Waveguide Fiber

Qianqian Zhang, Tao Wu*, Chenglin Sun, Chenwen Ye, Mengyu Wang, Lekang Fan, Yang Liu, and Xingdao He
Author Affiliations
  • Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
  • show less
    References(25)

    [1] Le Barbu T, Parvitte B, Zéninari V et al. Diode laser spectroscopy of H2O and CO2 in the 1.877-μm region for the in situ monitoring of the Martian atmosphere[J]. Applied Physics B, 82, 133-140(2006).

    [2] Nasim H, Jamil Y. Recent advancements in spectroscopy using tunable diode lasers[J]. Laser Physics Letters, 10, 043001(2013).

    [3] Liu C, Xu L J. Laser absorption spectroscopy for combustion diagnosis in reactive flows: a review[J]. Applied Spectroscopy Reviews, 54, 1-44(2019).

    [4] McBirney S E, Trinh K, Wong-Beringer A et al. Wavelength-normalized spectroscopic analysis of staphylococcus aureus and pseudomonas aeruginosa growth rates[J]. Biomedical Optics Express, 7, 4034-4042(2016).

    [5] Zhang Z R, Pang T, Sun P S et al. Measurement of carbon isotope of methane and analysis of its genesis type using laser absorption spectroscopy[J]. Chinese Journal of Lasers, 46, 1211001(2019).

    [6] Supplee J M, Whittaker E A, Lenth W. Theoretical description of frequency modulation and wavelength modulation spectroscopy[J]. Applied Optics, 33, 6294-6302(1994).

    [7] Schilt S, Thévenaz L, Robert P. Wavelength modulation spectroscopy: combined frequency and intensity laser modulation[J]. Applied Optics, 42, 6728-6738(2003).

    [8] Kluczynski P, Gustafsson J, Lindberg A M et al. Wavelength modulation absorption spectrometry: an extensive scrutiny of the generation of signals[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 1277-1354(2001).

    [9] Li H, Rieker G B, Liu X et al. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases[J]. Applied Optics, 45, 1052-1061(2006).

    [10] Reid J, Labrie D. Second-harmonic detection with tunable diode lasers: comparison of experiment and theory[J]. Applied Physics B, 26, 203-210(1981).

    [11] Liu J T C, Jeffries J B, Hanson R K. Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows[J]. Applied Physics B, 78, 503-511(2004).

    [12] Uehara K, Tai H. Remote detection of methane with a 1.66-microm diode laser[J]. Applied Optics, 31, 809-814(1992).

    [13] Yanagawa T, Saito S, Yamamoto Y. Frequency stabilization of 1.5-μm InGaAsP distributed feedback laser to NH3 absorption lines[J]. Applied Physics Letters, 45, 826-828(1984).

    [14] Yan Q, Yuan M, He T T et al. Pulse laser frequency locking method based on molecular absorption[J]. Acta Optica Sinica, 39, 1028005(2019).

    [15] Galzerano G, Fasci E, Castrillo A et al. Absolute frequency stabilization of an extended-cavity diode laser against Doppler-free H2O17 absorption lines at 1.384 microm[J]. Optics Letters, 34, 3107-3109(2009).

    [16] Wang Q, Wang Z, Ren W. Wavelength-stabilization-based photoacoustic spectroscopy for methane detection[J]. Measurement Science and Technology, 28, 065102(2017).

    [17] Hodges J T, Lisak D. Frequency-stabilized cavity ring-down spectrometer for high-sensitivity measurements of water vapor concentration[J]. Applied Physics B, 85, 375-382(2006).

    [18] Long D A, Okumura M, Miller C E et al. Frequency-stabilized cavity ring-down spectroscopy measurements of carbon dioxide isotopic ratios[J]. Applied Physics B, 105, 471-477(2011).

    [19] Wang G S, Mei J X, Tian X et al. Laser frequency locking and intensity normalization in wavelength modulation spectroscopy for sensitive gas sensing[J]. Optics Express, 27, 4878-4885(2019).

    [20] Li W D, Liu J Q, Zhu Y D et al. LEO-LEO infrared laser occultation technique to measure atmospheric carbon dioxide concentration[J]. Chinese Journal of Lasers, 46, 0810001(2019).

    [21] Ma S, Wu T, Sun C L et al. Real-time exhaled CO2 gas measurement using a mid-infrared hollow waveguide fiber[J]. Acta Optica Sinica, 40, 1130001(2020).

    [22] Wang X, Jing C R, Hou K X et al. Online detection of human-exhaled end-tidal carbon dioxide using tunable semiconductor absorption spectroscopy[J]. Chinese Journal of Lasers, 47, 0311002(2020).

    [23] Li J Y, Luo G, Du Z H et al. Hollow waveguide enhanced dimethyl sulfide sensor based on a 3.3 μm interband cascade laser[J]. Sensors and Actuators B: Chemical, 255, 3550-3557(2018).

    [24] Worrell C A, Giles I P, Adatia N A. Remote gas sensing with mid-infra-red hollow waveguide[J]. Electronics Letters, 28, 615-617(1992).

    [25] Chen J, Hangauer A, Strzoda R et al. Resolution limits of laser spectroscopic absorption measurements with hollow glass waveguides[J]. Applied Optics, 49, 5254-5261(2010).

    Tools

    Get Citation

    Copy Citation Text

    Qianqian Zhang, Tao Wu, Chenglin Sun, Chenwen Ye, Mengyu Wang, Lekang Fan, Yang Liu, Xingdao He. Stability of CO2 Gas Sensor Based on Hollow Waveguide Fiber[J]. Acta Optica Sinica, 2021, 41(15): 1528001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 15, 2021

    Accepted: Mar. 8, 2021

    Published Online: Aug. 11, 2021

    The Author Email: Wu Tao (wutccnu@nchu.edu.cn)

    DOI:10.3788/AOS202141.1528001

    Topics