Chinese Optics Letters, Volume. 19, Issue 9, 091407(2021)

Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review [Invited] Editors' Pick

Hongkun Nie1, Feifei Wang1, Junting Liu1, Kejian Yang1,2, Baitao Zhang1,2、*, and Jingliang He1,2
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
  • show less
    References(148)

    [1] H. Gebbie, W. Harding, C. Hilsum, A. Pryce, P. Sciences. Atmospheric transmission in the 1 to 14 µm region. Proc. R. Soc. A, 206, 87(1951).

    [2] L. S. Rothman, R. Gamache, R. Tipping, C. Rinsland, M. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, R. Transfer. The HITRAN molecular database: editions of 1991 and 1992. J. Quantum Spectrosc. Radiat. Transfer, 48, 469(1992).

    [3] L. S. Rothman, C. Rinsland, A. Goldman, S. Massie, D. Edwards, J. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi. The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J. Quantum Spectrosc. Radiat. Transfer, 60, 665(1998).

    [4] J. E. Bertie, Z. J. A. S. Lan. Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O at 25 C between 15,000 and 1 cm− 1. Am. Chem. Soc., 50, 1047(1996).

    [5] S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman. 3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3. IEEE J. Quantum Electron., 26, 403(1990).

    [6] T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, M. Kikuchi. High-power continuous-wave and cascade Ho3+:ZBLAN fiber laser and its medical applications. IEEE J. Sel. Top. Quantum Electron., 5, 936(1999).

    [7] S. D. Jackson. Single-transverse-mode 2.5 W holmium-doped fluoride fiber laser operating at 2.86 µm. Opt. Lett., 29, 334(2004).

    [8] C. Wang, H. Xia, Z. Feng, Z. Zhang, D. Jiang, J. Zhang, Q. Sheng, Q. Tang, S. He, H. Jiang, B. Chen. Enhanced emission at 2.85 µm of Ho3+/Pr3+ co-doped α-NaYF4 single crystal. Optoelectron. Lett., 12, 56(2016).

    [9] H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, J. He. Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95  µm. Opt. Lett., 42, 699(2017).

    [10] M. Tempus, W. Luethy, H. Weber, V. Ostroumov, I. Shcherbakov. 2.79 µm YSGG:Cr:Er laser pumped at 790 nm. IEEE J. Quantum Electron., 30, 2608(1994).

    [11] D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, R. A. Fields. Diode-pumped 1 W continuous-wave Er:YAG 3 µm laser. Opt. Lett., 24, 385(1999).

    [12] X. Zhu, R. Jain. 10-W-level diode-pumped compact 2.78 µm ZBLAN fiber laser. Opt. Lett., 32, 26(2007).

    [13] S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe. 12 W Q-switched Er:ZBLAN fiber laser at 2.8 µm. Opt. Lett., 36, 2812(2011).

    [14] V. Fortin, M. Bernier, S. T. Bah, R. Vallee. 30 W fluoride glass all-fiber laser at 2.94 µm. Opt. Lett., 40, 2882(2015).

    [15] W. Yao, H. Uehara, H. Kawase, H. Chen, R. Yasuhara. Highly efficient Er:YAP laser with 6.9 W of output power at 2920 nm. Opt. Express, 28, 19000(2020).

    [16] T. Li, K. Beil, C. Krankel, C. Brandt, G. HuberAdvanced Solid-State Photonics. Laser performance of highly doped Er:Lu2O3 at 2.8 µm, AW5A.6(2012).

    [17] R. Woodward, M. Majewski, G. Bharathan, D. Hudson, A. Fuerbach, S. D. Jackson. Watt-level dysprosium fiber laser at 3.15 µm with 73% slope efficiency. Opt. Lett., 43, 1471(2018).

    [18] S. D. Jackson. Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser. Appl. Phys. Lett., 83, 1316(2003).

    [19] H. Luo, J. Li, Y. Gao, Y. Xu, X. Li, Y. Liu. Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 µm using PbS nanoparticles. Opt. Lett., 44, 2322(2019).

    [20] Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, C. Tu. Mid-infrared emission in Dy:YAlO3 crystal. Opt. Mater. Express, 4, 1104(2014).

    [21] X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, N. Peyghambarian. Pulsed fluoride fiber lasers at 3 µm [Invited]. J. Opt. Soc. Am. B, 34, 538(2017).

    [22] P. L. Melngailis. Maser action in InAs diodes. Appl. Phys. Lett., 2, 176(1963).

    [23] D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. Connolly, T. L. Belenky. 2.3–2.7 µm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers. IEEE Poton. Technol. Lett., 11, 794(1999).

    [24] A. D. Andreev, D. V. Donetsky. Analysis of temperature dependence of the threshold current in 2.3–2.6 µm InGaAsSb/AlGaAsSb quantum-well lasers. Appl. Phys. Lett., 74, 2743(1999).

    [25] H. Choi, S. Eglash, G. J. Turner. Double-heterostructure diode lasers emitting at 3 µm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers. Appl. Phys. Lett., 64, 2474(1994).

    [26] A. Joullié, P. Christol, A. N. Baranov, A. J. Vicet. Mid-Infrared 2–5 µm heterojunction laser diodes. Solid-State Mid-Infrared Laser Sources, 89(2003).

    [27] C. Sirtori, J. J. Nagle. Quantum cascade lasers: the quantum technology for semiconductor lasers in the mid-far-infrared. C. R. Physique, 4, 639(2003).

    [28] D. Hofstetter, M. I. Faist. High Performance Quantum Cascade Lasers and Their Applications(2003).

    [29] G. Soboń, T. Martynkien, P. Mergo, L. Rutkowski, A. J. Foltynowicz. High-power frequency comb source tunable from 2.7 to 4.2 µm based on difference frequency generation pumped by an Yb-doped fiber laser. Opt. Lett., 42, 1748(2017).

    [30] J. Zhang, K. Fritsch, Q. Wang, F. Krausz, K. F. Mak, O. J. Pronin. Intra-pulse difference-frequency generation of mid-infrared (2.7–20 µm) by random quasi-phase-matching. Opt. Lett., 44, 2986(2019).

    [31] L. E. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, J. B. Pierce. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B, 12, 2102(1995).

    [32] A. Godard. Infrared (2–12 µm) solid-state laser sources: a review. Comptes Rendus Physique, 8, 1100(2007).

    [33] H. Ishizuki, T. J. Taira. High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm × 5 mm aperture. Opt. Lett., 30, 2918(2005).

    [34] Y. Peng, X. Wei, X. Luo, Z. Nie, J. Peng, Y. Wang, D. J. Shen. High-power and widely tunable mid-infrared optical parametric amplification based on PPMgLN. Opt. Lett., 41, 49(2016).

    [35] H. J. Krause, W. J. Daum. High-power source of coherent picosecond light pulses tunable from 0.41 to 12.9 µm. Appl. Phys. B, 56, 8(1993).

    [36] A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, T. M. Benson. Progress in rare-earth-doped mid-infrared fiber lasers. Opt. Express, 18, 26704(2010).

    [37] C. Zhao, Y. Hang, L. Zhang, J. Yin, P. Hu, E. Ma. Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 µm and 2.9 µm lasers. Opt. Mater., 33, 1610(2011).

    [38] D. D. Hudson, S. D. Jackson, B. J. Eggleton. Novel laser sources in the mid-infrared. IEEE 3rd International Conference on Photonics, 381(2012).

    [39] P. Zhang, Y. Hang, L. Zhang. Deactivation effects of the lowest excited state of Ho3+ at 2.9 µm emission introduced by Pr3+ ions in LiLuF4 crystal. Opt. Lett., 37, 5241(2012).

    [40] J. Ma, Z. Qin, G. Xie, L. Qian, D. Tang. Review of mid-infrared mode-locked laser sources in the 2.0 µm–3.5 µm spectral region. Appl. Phys. Rev., 6, 140(2019).

    [41] Y. O. Aydın, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, M. Bernier. Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica, 4, 235(2017).

    [42] R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, S. D. Jackson. Watt-level dysprosium fiber laser at 3.15 µm with 73% slope efficiency. Opt. Lett., 43, 1471(2018).

    [43] M. Robinson, D. P. Devor. Thermal switching of laser emission of Er3+ at 2.69 µm and Tm3+ at 1.86 µm in mixed crystals of CaF2:ErF3:TmF3. Appl. Phys. Lett., 10, 167(1967).

    [44] J. Chen, D. Sun, J. Luo, J. Xiao, H. Kang, H. Zhang, M. Cheng, Q. Zhang, S. Yin. Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals. Opt. Lett., 38, 1218(2013).

    [45] V. Lupei, S. Georgescu, V. Florea. On the dynamics of population inversion for 3 µm Er3+ lasers. IEEE J. Quantum Electron., 29, 426(1993).

    [46] B. J. Dinerman, P. F. Moulton. 3-µm cw laser operations in erbium-doped YSGG, GGG, and YAG. Opt. Lett., 19, 1143(1994).

    [47] T. Jensen, V. G. Ostroumov, G. Huber. Upconversion processes in Er3+:YSGG and diode-pumped laser experiments at 2.8 µm. Advanced Solid State Lasers, IL4(1995).

    [48] C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger. Emission properties of an optimised 2.8 µm Er3+:YLF laser. Opt. Commun., 139, 215(1997).

    [49] T. Li, K. Beil, C. Kränkel, G. Huber. Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 µm. Opt. Lett., 37, 2568(2012).

    [50] Y. Wang, Z. You, J. Li, Z. Zhu. En, and C. Tu, “Spectroscopic investigations of highly doped Er3+:GGGG and Er3+/Pr3+:GGGG crystals. J. Phys. D, 42, 215406(2009).

    [51] H. Zhang, X. Meng, C. Wang, P. Wang, L. Zhu, X. Liu, C. Dong, Y. Yang, R. Cheng, J. Dawes, J. Piper, S. Zhang, L. Sun. Growth, spectroscopic properties and laser output of Er:Ca4YO(BO3)3 and Er:Yb:Ca4YO(BO3)3 crystals. J. Crystal Growth, 218, 81(2000).

    [52] Y. D. Zavartsev, A. I. Zagumennyi, L. A. Kulevskii, A. V. Lukashev, P. P. Pashinin, P. A. Studenikin, I. A. Shcherbakov, A. F. Umyskov. Q-switching in a Cr3+: Yb3+: Ho3+: YSGG crystal laser based on the 5I6–5I7 (λ = 2.92 µm) transition. Quantum Electron., 29, 295(1999).

    [53] F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, I. M. Ranieri. Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals. J. Appl. Phys., 91, 624(2002).

    [54] J. Hu, H. Xia, H. Hu, X. Zhuang, Y. Zhang, H. Jiang, B. Chen. Enhanced 2.7 µm emission from diode-pumped Er3+/Pr3+ co-doped LiYF4 single crystal grown by Bridgman method. Mater. Res. Bull., 48, 2604(2013).

    [55] X. Zhuang, H. Xia, H. Hu, J. Hu, P. Wang, J. Peng, Y. Zhang, H. Jiang, B. Chen. Enhanced emission of 2.7 µm from Er3+/Nd3+-codoped LiYF4 single crystals. Mater. Sci. Eng. B, 178, 326(2013).

    [56] P. Wang, H. Xia, J. Peng, H. Hu, L. Tang, Y. Zhang, B. Chen, H. Jiang. Concentration effect of Nd3+ ion on the spectroscopic properties of Er3+/Nd3+ co-doped LiYF4 single crystal. Mater. Chem. Phys., 144, 349(2014).

    [57] Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, C. Tu. Diode-end-pumped midinfrared multiwavelength Er: Pr: GGG laser. IEEE Photon. Technol. Lett., 26, 667(2014).

    [58] J. Liu, X. Fan, J. Liu, W. Ma, J. Wang, L. Su. Mid-infrared self-Q-switched Er, Pr:CaF2 diode-pumped laser. Opt. Lett., 41, 4660(2016).

    [59] H. Xia, J. Feng, Y. Ji, Y. Sun, Y. Wang, Z. Jia, C. Tu. 2.7 µm emission properties of Er3+/Yb3+/Eu3+:SrGdGa3O7 and Er3+/Yb3+/Ho3+:SrGdGa3O7 crystals. J. Quant. Spectrosc. Radiat. Transfer, 173, 7(2016).

    [60] X. Zhao, D. Sun, J. Luo, H. Zhang, Z. Fang, C. Quan, L. Hu, M. Cheng, Q. Zhang, S. Yin. Laser performance of a 966 nm LD side-pumped Er,Pr:GYSGG laser crystal operated at 2.79 µm. Opt. Lett., 43, 4312(2018).

    [61] B. J. Dinerman, C. L. Moulton, A. Pinto. CW laser operation from Er:YAG, Er:GGG and Er:YSGG. Advanced Solid State Lasers, ML10(1992).

    [62] R. C. Stoneman, L. Esterowitz. Efficient resonantly pumped 2.8 µm Er3+:GSGG laser. Opt. Lett., 17, 816(1992).

    [63] A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, M. Andriasyan. Fe:ZnSe passive Q-switching of 2.8 µm Er:Cr:YSGG laser cavity. Proc. SPIE, 6451, 64510L(2007).

    [64] J. Luo, D. Sun, H. Zhang, Q. Guo, Z. Fang, X. Zhao, M. Cheng, Q. Zhang, S. Yin. Growth, spectroscopy, and laser performance of a 2.79 µm Cr,Er,Pr:GYSGG radiation-resistant crystal. Opt. Lett., 40, 4194(2015).

    [65] X. Zhao, D. Sun, J. Luo, H. Zhang, C. Quan, L. Hu, Z. Han, K. Dong, M. Cheng, S. Yin. Spectroscopic and laser properties of Er:LuSGG crystal for high-power approximately 2.8 µm mid-infrared laser. Opt. Express, 28, 8843(2020).

    [66] W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, M. Kokta. Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12. Appl. Phys. Lett., 51, 1218(1987).

    [67] Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, X. Tao. Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals. Crystengcomm, 21, 1928(2019).

    [68] R. Stoneman, J. Lynn, L. Esterowitz. Direct upper-state pumping of the 2.8 µm, Er3+:YLF laser. IEEE J. Quantum Electron., 28, 1041(1992).

    [69] C. Labbe, J. Doualan, P. Camy, R. Moncorgé, M. Thuau. The 2.8 µm laser properties of Er3+ doped CaF2 crystals. Opt. Commun., 209, 193(2002).

    [70] T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, A. Y. Dergachev. Continuously tunable cw lasing near 2.75 µm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals. Quantum Electron., 36, 591(2006).

    [71] J. Liu, X. Feng, X. Fan, Z. Zhang, B. Zhang, J. Liu, L. Su. Efficient continuous-wave and passive Q-switched mode-locked Er3+:CaF2-SrF2 lasers in the mid-infrared region. Opt. Lett., 43, 2418(2018).

    [72] R. Švejkar, J. Šulc, H. Jelínková, V. Kubeček, W. Ma, D. Jiang, Q. Wu, L. Su. Diode-pumped Er:SrF2 laser tunable at 2.7 µm. Opt. Mater. Express, 8, 1025(2018).

    [73] C. Quan, D. Sun, J. Luo, H. Zhang, Z. Fang, X. Zhao, L. Hu, M. Cheng, Q. Zhang, S. Yin. 2.7 µm dual-wavelength laser performance of LD end-pumped Er:YAP crystal. Opt. Express, 26, 28421(2018).

    [74] H. Kawase, R. Yasuhara. 2.92-µm high-efficiency continuous-wave laser operation of diode-pumped Er:YAP crystal at room temperature. Opt. Express, 27, 12213(2019).

    [75] L. Merkle, N. Ter-Gabrielyan, V. Fromzel. Cryogenic laser properties of Er:YAG and Er:Sc2O3-a comparison. Advanced Solid-State Photonics, AWA2(2011).

    [76] L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, D. Tang. Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 µm. Opt. Express, 22, 19495(2014).

    [77] H. Uehara, R. Yasuhara, S. Tokita, J. Kawanaka, M. Murakami, S. Shimizu. Efficient continuous wave and quasi-continuous wave operation of a 2.8 µm Er:Lu2O3 ceramic laser. Opt. Express, 25, 18677(2017).

    [78] X. Guan, J. Wang, Y. Zhang, B. Xu, Z. Luo, H. Xu, Z. Cai, X. Xu, J. Zhang, J. Xu. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers. Photon. Res., 6, 830(2018).

    [79] D. Yin, J. Wang, Y. Wang, P. Liu, J. Ma, X. Xu, D. Shen, Z. Dong, L. B. Kong, D. Tang. Fabrication of Er:Y2O3 transparent ceramics for 2.7  µm mid-infrared solid-state lasers. J. Euro. Ceram. Soc., 40, 444(2019).

    [80] Y. O. Aydın, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, M. Bernier. Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica, 4, 235(2017).

    [81] N. Ter-Gabrielyan, V. Fromzel. Cascade generation at 1.62, 1.73 and 2.8 µm in the Er:YLF Q-switched laser. Opt. Express, 27, 20199(2019).

    [82] G. S. John, W. David, F. Josh. Efficient 1.5 W CW and 9  mJ quasi-CW TEM00 mode operation of a compact diode-laser-pumped 2.94 µm Er:YAG laser. Proc. SPIE, 7578, 75781E(2010).

    [83] B. Shen, H. Kang, P. Chen, J. Liang, Q. Ma, J. Fang, D. Sun, Q. Zhang, S. Yin, X. Yan, L. Gao. Performance of continuous-wave laser-diode side-pumped Er:YSGG slab lasers at 2.79 µm. Appl. Phys. B, 121, 511(2015).

    [84] L. You, D. Lu, Z. Pan, H. Yu, H. Zhang, J. Wang. High-efficiency 3 µm Er:YGG crystal lasers. Opt. Lett., 43, 5873(2018).

    [85] H. Xue, L. Wang, W. Zhou, H. Wang, J. Wang, D. Tang, D. Shen. Stable Q-switched mode-locking of 2.7 µm Er:Y2O3 ceramic laser using a semiconductor saturable absorber. Appl. Sci., 8, 1155(2018).

    [86] Z. D. Fleischman, T. Sanamyan. Spectroscopic analysis of Er3+:Y2O3 relevant to 27 µm mid-IR laser. Opt. Mater. Express, 6, 3109(2016).

    [87] T. Sanamyan, M. Dubinskii. Er3+-doped diode-pumped ceramic laser delivers 14 W CW at 2.7 µm. CLEO, CMY1(2011).

    [88] W. Yao, H. Uehara, S. Tokita, H. Chen, D. Konishi, M. Murakami, R. Yasuhara. LD-pumped 2.8 µm Er:Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency. Appl. Phys. Express, 14, 012001(2020).

    [89] H. Kawase, H. Uehara, H. Chen, R. Yasuhara. Passively Q-switched 2.9 µm Er:YAP single crystal laser using graphene saturable absorber. Appl. Phys. Express, 12, 102006(2019).

    [90] J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, S. Yin. Spectroscopic properties and diode end-pumped 2.79 µm laser performance of Er,Pr:GYSGG crystal. Opt. Express, 21, 23425(2013).

    [91] M. Inochkin, L. Khloponin, V. Khramov, G. Altshuler, A. Erofeev, S. Wilson, F. Feldchein. High-efficiency diode-pumped Er:YLF laser with multi-wavelength generation. Proc. SPIE, 8235, 823502(2012).

    [92] S. Wüthrich, W. Lüthy, H. P. Weber. Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 µm. J. Appl. Phys., 68, 5467(1990).

    [93] A. Zajac, M. Skorczakowski, J. Swiderski, P. Nyga. Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications. Opt. Express, 12, 5125(2004).

    [94] P. Koranda, H. Jelínková, M. Nemec, J. Sulc, M. Cech. Electro-optically Q-switched Er:YAG laser. Lasers and Applications in Science and Engineering, 141(2005).

    [95] V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. G. Polushkin, A. A. Voronov. 2.94 µm Er:YAG Q-switched laser with FE2+:ZnSe passive shutter. Proc. SPIE, 6610, 661008(2007).

    [96] L. Wang, J. Wang, J. Yang, X. Wu, D. Sun, S. Yin, H. Jiang, J. Wang, C. Xu. 2.79 µm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser. Opt. Lett., 38, 2150(2013).

    [97] J. Wang, T. Cheng, L. Wang, J. Yang, D. Sun, S. Yin, X. Wu, H. Jiang. Compensation of strong thermal lensing in an LD side-pumped high-power Er:YSGG laser. Laser Phys. Lett., 12, 105004(2015).

    [98] Z. Qin, G. Xie, J. Zhang, J. Ma, P. Yuan, L. Qian. Continuous-wave and passively Q-switched Er:Y2O3 ceramic laser at 2.7  µm. International J. Opt., 2018, 3153614(2018).

    [99] Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, P. Liu, X. Xu, J. Zhang. Sub-15-ns passively Q-switched Er:YSGG laser at 2.8 µm with Fe:ZnSe saturable absorber. IEEE Photon. Technol. Lett., 31, 565(2019).

    [100] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077(2009).

    [101] Z. You, Y. Sun, D. Sun, Z. Zhu, Y. Wang, J. Li, C. Tu, J. Xu. High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA. Opt. Lett., 42, 871(2017).

    [102] X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, J. He. Few-layered ReS2 as saturable absorber for 2.8 µm solid state laser. Opt. Lett., 42, 3502(2017).

    [103] J. Liu, H. Huang, F. Zhang, Z. Zhang, J. Liu, H. Zhang, L. Su. Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser. Photon. Res., 6, 762(2018).

    [104] Q. Hao, J. Liu, Z. Zhang, B. Zhang, F. Zhang, J. Yang, J. Liu, L. Su, H. Zhang. Mid-infrared Er:CaF2–SrF2 bulk laser Q-switched by MXene Ti3C2Tx absorber. Appl. Phys. Express, 12, 085506(2019).

    [105] J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, L. Su. Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region. Opt. Express, 24, 30289(2016).

    [106] M. Fan, T. Li, S. Zhao, G. Li, H. Ma, X. Gao, C. Kränkel, G. Huber. Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 µm using MoS2. Opt. Lett., 41, 540(2016).

    [107] J. Xu, M. Li, Y. J. L. P. Chen. WS2 passively Q-switched Er:SrF2 laser at ∼3 µm. Laser Phys., 29, 055802(2019).

    [108] Y. Yao, N. Cui, Q. Wang, L. Dong, J. L. He. Highly efficient continuous-wave and ReSe2Q-switched 3 µm dual-wavelength Er:YAP crystal lasers. Opt. Lett., 44, 2839(2019).

    [109] B. Yan, B. Zhang, H. Nie, G. Li, X. Sun, Y. Wang, J. Liu, B. Shi, S. Liu, J. He. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers. Nanoscale, 10, 20171(2018).

    [110] X. Guan, L. Zhan, Z. Zhu, B. Xu, H. Xu, Z. Cai, W. Cai, X. Xu, J. Zhang, J. Xu. Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7 µm. Appl. Opt., 57, 371(2018).

    [111] P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, L. Qian. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm. Opt. Lett., 40, 4855(2015).

    [112] R. I. Woodward, D. D. Hudson, A. Fuerbach, S. D. Jackson. Generation of 70 fs pulses at 2.86 µm from a mid-infrared fiber laser. Opt. Lett., 42, 4893(2017).

    [113] H. Gu, Z. Qin, G. Xie, T. Hai, P. Yuan, J. Ma, L. Qian. Generation of 131 fs mode-locked pulses from 2.8 µm Er:ZBLAN fiber laser. Chin. Opt. Lett., 18, 031402(2020).

    [114] C. Wei, X. Zhu, R. A. Norwood, N. Peyghambarian. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm. Opt. Lett., 37, 3849(2012).

    [115] X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, N. Peyghambarian. Pulsed fluoride fiber lasers at 3 µm [Invited]. J. Opt. Soc. Am. B, 34, A15(2017).

    [116] H. Luo, J. Yang, J. Li, Y. Liu. Tunable sub-300 fs soliton and switchable dual-wavelength pulse generation from a mode-locked fiber oscillator around 2.8 µm. Opt. Lett., 46, 841(2021).

    [117] J. Machan, R. Kurtz, M. Bass, M. Birnbaum, M. Kokta. Simultaneous, multiple wavelength lasing of (Ho, Nd):Y3Al5O12. Appl. Phys. Lett., 51, 1313(1987).

    [118] A. F. Umyskov, D. Z. Yu, A. I. Zagumennyi, V. O. Vyacheslav, P. A. Studenikin. Cr3+, Yb3+, Ho3+:YSGG crystal laser with a continuously tunable emission wavelength in the range 2.84–3.05 µm. Quantum Electron., 26, 563(1996).

    [119] A. Diening, S. Kuck. Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet. J. Appl. Phys., 87, 4063(2000).

    [120] Z. Wang, B. Zhang, J. He, K. Yang, K. Han, J. Ning, J. Hou, F. Lou. Passively Q-switched mode-locking of Tm:YAP laser based on Cr:ZnS saturable absorber. Appl. Opt., 54, 4333(2015).

    [121] J. Q. Hong, L. H. Zhang, M. Xu, Y. Hang. Activation and deactivation effects to Ho3+ at ∼2.8 µm MIR emission by Yb3+ and Pr3+ ions in YAG crystal. Opt. Mater. Express, 6, 1444(2016).

    [122] H. Zhang, X. Sun, J. Luo, Z. Fang, X. Zhao, M. Cheng, Q. Zhang, D. Sun. Structure, defects, and spectroscopic properties of a Yb,Ho,Pr:YAP laser crystal. J. Alloys Comp., 672, 223(2016).

    [123] J. Hong, L. Zhang, Y. Hang. Enhanced 2.86 µm emission of Ho3+,Pr3+-codoped LaF3 single crystal. Opt. Mater. Express, 7, 1509(2017).

    [124] S. Li, L. Zhang, M. He, G. Chen, Y. Yang, S. Zhang, M. Xu, T. Yan, N. Ye, Y. Hang. Nd3+ as effective sensitizing and deactivating ions for the 2.87 µm lasers in Ho3+ doped LaF3 crystal. J. Lumin., 208, 63(2019).

    [125] S. Wang, J. Zhang, N. Xu, S. Jia, G. Brambilla, P. Wang. 2.9 µm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser. Opt. Lett., 45, 1216(2020).

    [126] D. Anthon, T. Pier. Laser-pumped 3 µm Ho:YAG and Ho:GGG lasers. Advanced Solid State Lasers, MML3(1990).

    [127] A. F. Umyskov, Y. D. Zavartsev, A. I. Zagumennyi, V. V. Osiko, P. A. Studenikin. Efficient 3 µm Cr3+:Yb3+:Ho3+:YSGG crystal laser. Quantum Electron., 26, 771(1996).

    [128] A. V. Lukashev, Y. D. Zavartsev, A. I. Zagumennyi, M. E. Karasev, L. A. Kulevskii, P. P. Pashinin, P. A. Studenikin, V. N. Tranev. Efficient flash lamp pumped YSGG:Cr:Yb:Ho laser at 3 µm. IEEE LEOS Annual Meeting Conference, 914(1999).

    [129] A. Diening, E. A. Möbert, E. Heumann, G. Huber, B. H. T. Chai. Diode-pumped cw lasing of Yb,Ho:KYF4 in the 3 µm spectral range in comparison to Er:KYF4. Laser Phys., 8, 214(1998).

    [130] H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, J. He. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+,Pr3+:LiLuF4 bulk laser at 2.95 µm. IEEE J. Sel. Top. Quantum Electron., 53, 8400208(2017).

    [131] H. Nie, H. Xia, B. Shi, J. Hu, B. Zhang, K. Yang, J. He. High-efficiency watt-level continuous-wave 2.9 µm Ho,Pr:YLF laser. Opt. Lett., 43, 6109(2018).

    [132] H. Nie, B. Shi, H. Xia, J. Hu, B. Zhang, K. Yang, J. L. He. High-repetition-rate kHz electro-optically Q-switched Ho, Pr:YLF 2.9 µm bulk laser. Opt. Express, 26, 33671(2018).

    [133] S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, G. Rosenblatt. 3 µm laser performance of Ho:YAlO3 and Nd, Ho:YAlO3. IEEE J. Quantum Electron., 26, 403(1990).

    [134] S. Bowman, W. Rabinovich, B. Feldman, M. Winings. Tuning the 3 µm Ho:YAlO3 Laser. Advanced Solid State Lasers, MML4(1990).

    [135] H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, J. He. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+,Pr3+:LiLuF4 bulk laser at 2.95 µm. IEEE J. Sel. Top. Quantum Electron., 24, 1600205(2017).

    [136] Z. Yan, G. Li, T. Li, S. Zhao, K. Yang, S. Zhang, M. Fan, L. Guo, B. Zhang. Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2. IEEE Photon. J., 9, 1506207(2017).

    [137] H. Nie, X. Sun, B. Zhang, B. Yan, G. Li, Y. Wang, J. Liu, B. Shi, S. Liu, J. He. Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 µm bulk laser. Opt. Lett., 43, 3349(2018).

    [138] M. Fan, T. Li, G. Li, S. Zhao, K. Yang, S. Zhang, B. Zhang, J. Xu, C. Kränkel. Passively Q-switched Ho,Pr:LiLuF4 laser with graphitic carbon nitride nanosheet film. Opt. Express, 25, 12796(2017).

    [139] W. Duan, H. Nie, X. Sun, B. Zhang, G. He, Q. Yang, H. Xia, R. Wang, J. Zhan, J. He. Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber. Opt. Lett., 43, 1179(2018).

    [140] S. Liu, H. Nie, B. Zhang, S. Li, Y. Yan, L. He. Continuous-wave-tunable and passively Q-switched 2.9 µm Ho,Pr:LiLuF4 lasers. Laser Phys. Lett., 16, 015802(2019).

    [141] L. F. Johnson, H. J. Guggenheim. Laser emission at 3 µm from Dy3+ in BaY2F8. Appl. Phys. Lett., 23, 96(1973).

    [142] N. Djeu, V. E. Hartwell, A. A. Kaminskii, A. V. Butashin. Room-temperature 3.4 µm Dy:BaYb2F8 laser. Opt. Lett., 22, 997(1997).

    [143] Y. H. Tsang, A. E. El. Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd: YAG laser operating at 1.3 µm. Opt. Express, 14, 678(2006).

    [144] M. R. Majewski, S. D. Jackson. Highly efficient mid-infrared dysprosium fiber laser. Opt. Lett., 41, 2173(2016).

    [145] R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, S. D. Jackson. Q-switched Dy:ZBLAN fiber lasers beyond 3 µm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus. Opt. Express, 27, 15032(2019).

    [146] H. Luo, Y. Xu, J. Li, Y. Liu. Gain-switched dysprosium fiber laser tunable from 2.8 to 3.1 µm. Opt. Express, 27, 27151(2019).

    [147] Y. Dwivedi, S. B. Rai. Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass. Opt. Mater., 31, 1472(2009).

    [148] P. Zhang, M. Xu, L. Zhang, J. Hong, X. Wang, Y. Wang, G. Chen, Y. Hang. Intense 2.89 µm emission from Dy3+/Yb3+-codoped PbF2 crystal by 970 nm laser diode pumping. Opt. Express, 23, 27786(2015).

    CLP Journals

    [1] Jincheng Wei, Peng Li, Linpeng Yu, Shuangchen Ruan, Keyi Li, Peiguang Yan, Jiachen Wang, Jinzhang Wang, Chunyu Guo, Wenjun Liu, Ping Hua, Qitao Lü. Mode-locked fiber laser of 3.5 µm using a single-walled carbon nanotube saturable absorber mirror[J]. Chinese Optics Letters, 2022, 20(1): 011404

    [2] Chao Ning, Tian Yu, Shuman Liu, Jinchuan Zhang, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Yuan Li, Fengqi Liu. Interband cascade lasers with short electron injector[J]. Chinese Optics Letters, 2022, 20(2): 022501

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Hongkun Nie, Feifei Wang, Junting Liu, Kejian Yang, Baitao Zhang, Jingliang He. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091407

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers, Optical Amplifiers, and Laser Optics

    Received: Apr. 27, 2021

    Accepted: May. 21, 2021

    Published Online: Aug. 26, 2021

    The Author Email: Baitao Zhang (btzhang@sdu.edu.cn)

    DOI:10.3788/COL202119.091407

    Topics