Optical Communication Technology, Volume. 47, Issue 5, 12(2023)
Research on elastic optical network resource allocation based on improved DQN reinforcement learning algorithm
[5] [5] SHARMA D, KUMAR S. Evaluation of network blocking probability and network utilization efficiency on proposed elastic optical network using RSA algorithms[J]. Journal of Optical Communications, 2020, 41(4) : 403-409.
[9] [9] MUHAMMAD A, ZERVAS G, FORCHHEIMER R. Resource allocation for space-division multiplexing: optical white box versus optical black box networking[J]. Journal of Lightwave Technology, 2015, 33(23): 4928-4941.
[12] [12] GOSAVI A, PARULEKAR A. Solving Markov decision processes with downside risk adjustment[J]. International Journal of Automation and Computing, 2016,13(3): 235-245.
[13] [13] RAZMINIA A, ASADIZADEHSHIRAZ M, TORRES D. Fractional order version of the Hamilton-Jacobi-Bellman equation[J]. Journal of Computational and Nonlinear Dynamics, 2019(1): 14-18.
[14] [14] HUANG T, ZHANG R X, ZHOU C, et al. QARC: video quality aware rate control for real-time video streaming via deep reinforcement learning[C]//ACM. Proceedings of 2018 ACM Multimedia Conference. New York: ACM, 2018: 1208-1216.
[15] [15] RIEDMILLER M. Neural fitted Q iteration-first experiences with a data efficient neural reinforcement learning method[C]// European Conference on Machine Learning, October 3-7, 2005, Berlin, Germany. Heidelberg: Spinger, 2005: 317-328.
Get Citation
Copy Citation Text
SHANG Xiaokai, HAN Longlong, ZHAI Huipeng. Research on elastic optical network resource allocation based on improved DQN reinforcement learning algorithm[J]. Optical Communication Technology, 2023, 47(5): 12
Received: Mar. 9, 2023
Accepted: --
Published Online: Feb. 2, 2024
The Author Email: