Acta Photonica Sinica, Volume. 53, Issue 12, 1225001(2024)

Suppression Effect of MgO Nanoparticles on Carrier Recombination in ZnO Ultraviolet Photoelectric Conversion Coatings

Yufeng TONG1, Shijie ZENG1, Hongwang YANG1, Cai WEN1、*, Jinlong TANG1, Min CHEN2、**, Xiaoyu LI2, Zhuang XU2、***, Yuan WEI2, and Yong REN3
Author Affiliations
  • 1School of Mathematics and Physics,Southwest University of Science and Technology,Mianyang 621010,China
  • 2Ninth Research Institute,China Electronics Technology Group Corporation,Mianyang 621000,China
  • 3State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology,Mianyang 621010,China
  • show less
    References(34)

    [1] SMITH D D, COUSINS P, WESTERBERG S et al. Toward the practical limits of silicon solar cells[J]. IEEE Journal of Photovoltaics, 4, 1465-1469(2014).

    [2] CARIOU R, BENICK J, FELDMANN F et al. Ⅲ-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration[J]. Nature Energy, 3, 326-333(2018).

    [3] ANDREANI L C, BOZZOLA A, KOWALCZEWSKI P et al. Silicon solar cells: toward the efficiency limits[J]. Advances in Physics: X, 4, 124-148(2019).

    [4] TIEDJE T O M, YABLONOVITCH E L I, CODY G D et al. Limiting efficiency of silicon solar cells[J]. IEEE Transactions on Electron Devices, 31, 711-716(1984).

    [5] HUANG S, KANG B, DUAN L et al. Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers[J]. Journal of Colloid and Interface Science, 583, 178-187(2021).

    [6] KULKARNI A, JENA A K, CHEN H W et al. Revealing and reducing the possible recombination loss within TiO2 compact layer by incorporating MgO layer in perovskite solar cells[J]. Solar Energy, 136, 379-384(2016).

    [7] LI L, YANG X C, GAO J J et al. Electric characteristics of MgO-doped TiO2 nanocrystalline film in dye-sensitized solar cells[J]. Advanced Materials Research, 236, 2106-2109(2011).

    [8] CHEN H Y, KOO H S, HSU Y L et al. Performance analysis of dye-sensitized solar cells with various MgO-ZnO mixed photoanodes prepared by wet powder mixing and grinding[J]. Journal of Modern Optics, 68, 1240-1250(2021).

    [9] LI W, DONG H, WANG L et al. Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination[J]. Journal of Materials Chemistry A, 2, 13587-13592(2014).

    [10] MOHAMMED M K A. Efficient and stable perovskite solar cells based on mesoscopic architecture with nanoparticles additive treatment[J]. Materials Science in Semiconductor Processing, 148, 106832(2022).

    [11] KAY A, GRÄTZEL M. Dye-sensitized core-shell nanocrystals improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide[J]. Chemistry of Materials, 14, 2930-2935(2002).

    [12] WANG H, LI H, CAO S et al. Interface modulator of ultrathin magnesium oxide for low‐temperature‐processed inorganic CsPbIBr2 perovskite solar cells with efficiency Over 11%[J]. Solar RRL, 4, 2000226(2020).

    [13] ZHENG G, WANG J, LIU X et al. Valence band offset of MgO/TiO2 (rutile) heterojunction measured by X-ray photoelectron spectroscopy[J]. Applied Surface Science, 256, 7327-7330(2010).

    [14] DAGAR J, CASTRO-HERMOSA S, LUCARELLI G et al. Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers[J]. Nano Energy, 49, 290-299(2018).

    [15] HU Q, WU C, CAO L et al. A novel TiO2 nanowires/nanoparticles composite photoanode with SrO shell coating for high performance dye-sensitized solar cell[J]. Journal of Power Sources, 226, 8-15(2013).

    [16] ZI W, MU F, LU X et al. Sputtering Al2O3 as an effective interface layer to improve open-circuit voltage and device performance of Sb2Se3 thin-film solar cells[J]. Materials Science in Semiconductor Processing, 153, 107185(2023).

    [17] HAN G S, CHUNG H S, KIM B J et al. Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films[J]. Journal of Materials Chemistry A, 3, 9160-9164(2015).

    [18] TENNAKONE K, BANDARA J, BANDARANAYAKE P K M et al. Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2[J]. Japanese Journal of Applied Physics, 40, L732-L734(2001).

    [19] TAGUCHI T, ZHANG X, SUTANTO I et al. Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film[J]. Chemical Communications, 2480-2481(2003).

    [20] SELVARATNAM B, KOODALI R T. TiO2-MgO mixed oxide nanomaterials for solar energy conversion[J]. Catalysis Today, 300, 39-49(2018).

    [21] SENEVIRATHNA M K I, PITIGALA P, PREMALAL E V A et al. Stability of the SnO2/MgO dye-sensitized photoelectrochemical solar cell[J]. Solar Energy Materials and Solar Cells, 91, 544-547(2007).

    [22] DAGAR J, CASTRO-HERMOSA S, LUCARELLI G et al. Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers[J]. Nano Energy, 49, 290-299(2018).

    [23] QIN C, WANG Y, LOU Z et al. Surface modification and stoichiometry control of Cu2O/SnO2 heterojunction solar cell by an ultrathin MgO tunneling layer[J]. Journal of Alloys and Compounds, 779, 387-393(2019).

    [24] BALA D A, ALI H, ONIMISI M Y et al. Effect of MgO recombination barrier layer on the performance of monolithic-structured solid-state dye sensitized solar cells[J]. Materials Research Innovations, 28, 71-82(2024).

    [25] INPOR K, PHOTIPHITAK C, THANACHAYANONT C. Effect of MgO-coated TiO2 thin film on ITO/TiO2/MEH-PPV/Au solar cells[J]. Current Applied Physics, 12, S198-S201(2012).

    [26] HWANG J D, CHEN B Y. Enhancing the photo-to-dark current ratio by inserting a thin MgO layer in p-NiO/i-NiO/n-Si photodiodes[J]. Ceramics International, 50, 33430-33436(2024).

    [27] MISHRA Y K, ADELUNG R. ZnO tetrapod materials for functional applications[J]. Materials Today, 21, 631-651(2018).

    [28] GHOLIZADEH A, REYHANI A, PARVIN P et al. Efficiency enhancement of ZnO nanostructure assisted Si solar cell based on fill factor enlargement and UV-blue spectral down-shifting[J]. Journal of Physics D: Applied Physics, 50, 185501(2017).

    [29] JANOTTI A, VAN DE WALLE C G. Fundamentals of zinc oxide as a semiconductor[J]. Reports on Progress in Physics, 72, 1-29(2009).

    [30] SULIMAN A E, TANG Y, XU L. Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells, 91, 1658-1662(2007).

    [31] HUANG S, KANG B, DUAN L et al. Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers[J]. Journal of Colloid and Interface Science, 583, 178-187(2021).

    [32] DOCAMPO P, TIWANA P, SAKAI N et al. Unraveling the function of an MgO interlayer in both electrolyte and solid-state SnO2 based dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 116, 22840-22846(2012).

    [33] LIU C, XIAO C, LI W. Zinc oxide nanoparticles as electron transporting interlayer in organic solar cells[J]. Journal of Materials Chemistry C, 9, 14093-14114(2021).

    [34] PLANK N O V, SNAITH H J, DUCATI C et al. A simple low temperature synthesis route for ZnO-MgO core-shell nanowires[J]. Nanotechnology, 19, 465603(2008).

    Tools

    Get Citation

    Copy Citation Text

    Yufeng TONG, Shijie ZENG, Hongwang YANG, Cai WEN, Jinlong TANG, Min CHEN, Xiaoyu LI, Zhuang XU, Yuan WEI, Yong REN. Suppression Effect of MgO Nanoparticles on Carrier Recombination in ZnO Ultraviolet Photoelectric Conversion Coatings[J]. Acta Photonica Sinica, 2024, 53(12): 1225001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 11, 2024

    Accepted: Aug. 26, 2024

    Published Online: Jan. 15, 2025

    The Author Email: Cai WEN (wencai@swust.edu.cn), Min CHEN (chenmin215@qq.com), Zhuang XU (m13880754574@163.com)

    DOI:10.3788/gzxb20245312.1225001

    Topics