Optical Instruments, Volume. 45, Issue 1, 32(2023)
Application of XGBoost machine learning in error compensation of photoelectric encoder
[2] [2] INCZE I I, SZAB C, IMECS M. Incremental encoder in electrical drives: modeling simulation[M] RUDAS I J, FOD J, KACPRZYK J. Computational Intelligence Infmatics: Principles Practice. Berlin, Heidelberg: Springer, 2010: 287 300.
[4] LU L, WANG L, WANG W, et al. A self-calibration method for error of photoelectric encoder based on gyro in rotational inertial navigation system[J]. Microsystem Technologies, 25, 2145-2152(2019).
[5] [5] BHANGU B S, RAJASHEKARA K. Control strategy f electric starter generats embedded in gas turbine engine f aerospace applications[C]Energy Conversion Congress & Exposition. Phoenix: IEEE, 2011: 1461 1467.
[6] HOU B, ZHOU B, LI X, et al. Periodic nonlinear error analysis and compensation of a single-excited petal-shaped capacitive encoder to achieve high-accuracy measurement[J]. Sensors, 19, 2412(2019).
[11] JIA H K, YU L D, ZHAO H N, et al. A new method of angle measurement error analysis of rotary encoders[J]. Applied Sciences, 9, 3415(2019).
[12] YU H. Angle measurement based on in-line digital holographic reconstruction[J]. Optics and Lasers in Engineering, 137, 106385(2021).
Get Citation
Copy Citation Text
Yingzheng LI, Zhibin LI, Lei JIN, Zhenzhen HU, Yefei KANG, Gengbai LI. Application of XGBoost machine learning in error compensation of photoelectric encoder[J]. Optical Instruments, 2023, 45(1): 32
Category: APPLICATION TECHNOLOGY
Received: Jul. 5, 2022
Accepted: --
Published Online: Mar. 20, 2023
The Author Email: LI Zhibin (thermal_li@163.com)