Journal of Innovative Optical Health Sciences, Volume. 13, Issue 3, 2050011(2020)

Interaction between Bax and Bcl-XL proteins confirmed by partial acceptor photobleaching-based FRET imaging

Fangfang Yang1... Mengyan Du1, Xiaoping Wang2,* and Tongsheng Chen1 |Show fewer author(s)
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
  • 2Department of Pain Management, the First A±liated Hospital of Jinan University, Guangzhou 510630, P. R. China
  • show less
    References(39)

    [1] [1] J. M. Adams, S. Cory, "The Bcl-2 apoptotic switch in cancer development and therapy," Oncogene 26 (9), 1324–1337 (2007).

    [2] [2] J. K. Brunelle, A. Letai, "Control of mitochondrial apoptosis by the Bcl-2 family," J. Cell Sci. 122(4), 437–441 (2009).

    [3] [3] F. Edlich, S. Banerjee, M. Suzuki, M. M. Cleland, D. Arnoult, C. Wang, A. Neutzner, N. Tjandra, R. J. Youle, "Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol," Cell 145(1), 104–116 (2011).

    [4] [4] M. C. Wei, W. X. Zong, E. H. Y. Cheng, T. Lindsten, V. Panoutsakopoulou, A. J. Ross, K. A. Roth, G. R. MacGregor, C. B. Thompson, S. J. Korsmeyer, "Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death," Science 292(5517), 727–730 (2001).

    [5] [5] K. G. Wolter, Y. T. Hsu, C. L. Smith, A. Nechushtan, X. G. Xi, R. J. Youle, "Movement of Bax from the cytosol to mitochondria during apoptosis," J. Cell Biol. 139(5), 1281–1292 (1997).

    [6] [6] A. Aranovich, Q. Liu, T. Collins, F. Geng, S. Dixit, B. Leber, D. W. Andrews, "Differences in the mechanisms of proapoptotic BH3 proteins binding to Bcl-XL and Bcl-2 quantified in live MCF-7 cells," Mol. Cell 45(6), 754–763 (2012).

    [7] [7] G. Hausmann, L. A. O'Reilly, R. van Driel, J. C. Beaumont, A. Strasser, J. M. Adams, D. C. Huang, "Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L)," J. Cell Biol. 149(3), 623–634 (2000).

    [8] [8] Y. T. Hsu, K. G. Wolter, R. J. Youle, "Cytosolto-membrane redistribution of Bax and Bcl-XL during apoptosis," Proc. Natl. Acad. Sci. USA 94 (8), 3668–3672 (1997).

    [9] [9] D. Nijhawan, M. Fang, E. Traer, Q. Zhong,W. Gao, F. Du, X. Wang, "Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation," Genes Dev. 17(12), 1475–1486 (2003).

    [10] [10] T. W. Sedlak, Z. N. Oltvai, E. Yang, K. Wang, L. H. Boise, C. B. Thompson, S. J. Korsmeyer, "Multiple Bcl-2 family members demonstrate selective dimerizations with Bax," Proc. Natl. Acad. Sci. USA 92 (17), 7834–7838 (1995).

    [11] [11] E. Yang, J. Zha, J. Jockel, L. H. Boise, C. B. Thompson, S. J. Korsmeyer, "Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death," Cell 80(2), 285–291 (1995).

    [12] [12] Y. T. Hsu, R. J. Youle, "Nonionic detergents induce dimerization among members of the Bcl-2 family," J. Biol. Chem. 272(21), 13829–13834 (1997).

    [13] [13] S. Y. Jeong, B. Gaume, Y. J. Lee, Y. T. Hsu, S. W. Ryu, S. H. Yoon, R. J. Youle, "Bcl-x(L) sequesters its C-terminal membrane anchor in soluble, cytosolic homodimers," EMBO J. 23(10), 2146–2155 (2004).

    [14] [14] L. P. Billen, C. L. Kokoski, J. F. Lovell, B. Leber, D. W. Andrews, "Bcl-XL inhibits membrane permeabilization by competing with Bax," PLoS Biol. 6(6), e147 (2008).

    [15] [15] T. T. Renault, O. Teijido, B. Antonsson, L. M. Dejean, S. Manon, "Regulation of Bax mitochondrial localization by Bcl-2 and Bcl-xL: Keep your friends close but your enemies closer," Int. J. Biochem. Cell Biol. 45(1), 64–67 (2013).

    [16] [16] F. Llambi, T. Moldoveanu, S. W. Tait, L. Bouchier-Hayes, J. Temirov, L. L. McCormick, C. P. Dillon, D. R. Green, "A unified model of mammalian BCL-2 protein family interactions at the mitochondria," Mol. Cell 44(4), 517–531 (2011).

    [17] [17] B. Schellenberg, P. Wang, J. A. Keeble, R. Rodriguez-Enriquez, S. Walker, T. W. Owens, F. Foster, J. Tanianis-Hughes, K. Brennan, C. H. Streuli, A. P. Gilmore, "Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming," Mol. Cell 49(5), 959–971 (2013).

    [18] [18] T. T. Renault, O. Teijido, F. Missire, Y. T. Ganesan, G. Velours, H. Arokium, F. Beaumatin, R. Llanos, A. Athane, N. Camougrand, M. Priault, B. Antonsson, L. M. Dejean, S. Manon, "Bcl-xL stimulates Bax relocation to mitochondria and primes cells to ABT-737," Int. J. Biochem. Cell Biol. 64, 136–146 (2015).

    [19] [19] F. Todt, Z. Cakir, F. Reichenbach, R. J. Youle, F. Edlich, "The C-terminal helix of Bcl-x(L) mediates Bax retrotranslocation from the mitochondria," Cell Death Differ. 20(2), 333–342 (2013).

    [20] [20] H. Dussmann, M. Rehm, C. G. Concannon, S. Anguissola, M. Wurstle, S. Kacmar, P. Voller, H. J. Huber, J. H. Prehn, "Single-cell quantification of Bax activation and mathematical modelling suggest pore formation on minimal mitochondrial Bax accumulation," Cell Death Differ. 17(2), 278–290 (2010).

    [21] [21] R. Heim, R. Y. Tsien, "Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer," Curr. Biol. 6(2), 178–182 (1996).

    [22] [22] E. A. Jares-Erijman, T. M. Jovin, "Imaging molecular interactions in living cells by FRET microscopy," Curr. Opin. Chem. Biol. 10(5), 409–416 (2006).

    [23] [23] M. Mohsin, M. Z. Abdin, L. Nischal, H. Kardam, A. Ahmad, "Genetically encoded FRET-based nanosensor for in vivo measurement of leucine," Biosens. Bioelectron. 50, 72–77 (2013).

    [24] [24] A. K. Kenworthy, M. Edidin, "Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <1000 nm using imaging fluorescence resonance energy transfer," J. Cell Biol. 142(1), 69–84 (1998).

    [25] [25] F. S. Wouters, P. I. Bastiaens, K. W. Wirtz, T. M. Jovin, "FRET microscopy demonstrates molecular association of non-specific lipid transfer protein (nsL-TP) with fatty acid oxidation enzymes in peroxisomes," EMBO J. 17(24), 7179–7189 (1998).

    [26] [26] H. Yu, J. Zhang, H. Li, T. Chen, "Ma-PbFRET: Multiple acceptors FRET measurement based on partial acceptor photobleaching," Microsc. Microanal. 19(1), 171–179 (2013).

    [27] [27] S. Lalonde, D. W. Ehrhardt, D. Loque, J. Chen, S. Y. Rhee, W. B. Frommer, "Molecular and cellular approaches for the detection of protein-protein interactions: Latest techniques and current limitations," Plant J. 53(4), 610–635 (2008).

    [28] [28] A. D. Elder, A. Domin, G. K. Schierle, C. Lindon, J. Pines, A. Esposito, C. F. Kaminski, "A quantitative protocol for dynamic measurements of protein interactions by Forster resonance energy transfersensitized fluorescence emission," J. R. Soc. Interface 6(S1), S59–S81 (2009).

    [29] [29] L. Wang, T. Chen, J. Qu, X. Wei, "Photobleachingbased quantitative analysis of fluorescence resonance energy transfer inside single living cell," J. Fluoresc. 20(1), 27–35 (2010).

    [30] [30] H. Yu, J. Zhang, H. Li, J. Qu, T. Chen, "An empirical quantitative fluorescence resonance energy transfer method for multiple acceptors based on partial acceptor photobleaching," Appl. Phys. Lett. 100(25), 253701 (2012).

    [31] [31] L. Zhang, H. Yu, J. Zhang, T. Chen, "Binomial distribution-based quantitative measurement of multiple-acceptors fluorescence resonance energy transfer by partially photobleaching acceptor," Appl. Phys. Lett. 104(24), 243706 (2014).

    [32] [32] L. Chai, J. Zhang, L. Zhang, T. Chen, "Miniature fiber optic spectrometer-based quantitative fluorescence resonance energy transfer measurement in single living cells," J. Biomed. Opt. 20(3), 037008 (2015).

    [33] [33] T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, R. Pepperkok, "Spectral imaging and linear unmixing enables improved FRET e±ciency with a novel GFP2-YFP FRET pair," FEBS Lett. 531(2), 245–249 (2002).

    [34] [34] C. Thaler, S. V. Koushik, P. S. Blank, S. S. Vogel, "Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer," Biophys. J. 89(4), 2736–2749 (2005).

    [35] [35] J. Zhang, H. Li, L. Chai, L. Zhang, J. Qu, T. Chen, "Quantitative FRET measurement using emissionspectral unmixing with independent excitation crosstalk correction," J. Microsc. 257(2), 104–116 (2015).

    [36] [36] M. Bruncko, T. K. Oost, B. A. Belli, H. Ding, M. K. Joseph, A. Kunzer, D. Martineau, W. J. McClellan, M. Mitten, S. C. Ng, P. M. Nimmer, T. Oltersdorf, C. M. Park, A. M. Petros, A. R. Shoemaker, X. Song, X. Wang, M. D. Wendt, H. Zhang, S. W. Fesik, S. H. Rosenberg, S. W. Elmore, "Studies leading to potent, dual inhibitors of Bcl-2 and BclxL," J. Med. Chem. 50(4), 641–662 (2007).

    [37] [37] N. S. Wang, M. T. Unkila, E. Z. Reineks, C. W. Distelhorst, "Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death," J. Biol. Chem. 276(47), 44117–44128 (2001).

    [38] [38] T. Zal, N. R. Gascoigne, "Photobleaching-corrected FRET e±ciency imaging of live cells," Biophys. J. 86(6), 3923–3939 (2004).

    [39] [39] H. Chen, H. L. Puhl, S. V. Koushik, S. S. Vogel, S. R. Ikeda, "Measurement of FRET e±ciency and ratio of donor to acceptor concentration in living cells," Biophys. J. 91(5), L39–L41 (2006).

    Tools

    Get Citation

    Copy Citation Text

    Fangfang Yang, Mengyan Du, Xiaoping Wang, Tongsheng Chen. Interaction between Bax and Bcl-XL proteins confirmed by partial acceptor photobleaching-based FRET imaging[J]. Journal of Innovative Optical Health Sciences, 2020, 13(3): 2050011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 28, 2019

    Accepted: Jan. 19, 2020

    Published Online: Aug. 6, 2020

    The Author Email: Wang Xiaoping (txp2938@jnu.edu.cn)

    DOI:10.1142/s179354582050011x

    Topics