Optics and Precision Engineering, Volume. 11, Issue 4, 326(2003)
[in Chinese]
[2] [2] FATIKOW S, REMBOLD U. Microsystem technology and microrobotics[A]. Springer-Verlag Berlin Heidelberg[C]. 1997.303-361.
[3] [3] KLOCKE V. Trends in nanomanipulation: from nanometer to micro production line[A]. 8th International Conference on New Actuator[C]. Bremen, Germany, 2002.100-105.
[4] [4] ELMUSTAFA A A, LAGALLY M G. Flexural hinge guided motion nanopositioner stage for precision machining: finite element simulations[J]. Precision Engineering, 2001, 21:77-81.
[5] [5] HOLLIS R. Whither microrobots[A]. IEEE Seventh International Symposium on Micro Machine and Human Science[C]. 1996.9-12.
[6] [6] ISHIKAWA Y, KITAHARA T. Present and future of micromechatronics[A].IEEE International Symposium on Micro Mechatronics and Human Science[C],1997.13-20.
[7] [7] HAYASHI I, IWATSUKI N. Micro moving robotics[A]. IEEE International Symposium on Micro Mechatronics and Human Science[C]. 1998.41-50.
[8] [8] IDOGAKI T, KANAYAMA H, OHYA N. Characteristics of piezoelectric locomotive mechanism for on in-pipe micro inspection machine[A]. IEEE Sixth International Symposium on Micro Machine and Human Science[C]. 1995.193-197.
[9] [9] KAWAKITA S, ISOGAI T, OHYA N, et al.Multi-layered piezoelectric bimorph actuator[A]. IEEE International Symposium on Micro Mechatronics and Human Science[C]. 1997.73-77.
[10] [10] SHIBATO T, SASAYA T, KAWAHARA N. Micro wave energy supply system for in-pipe micromachine[A]. IEEE International Symposium on Micro Mechatronics and Human Science[C]. 1998.237-242.
[11] [11] TSURUTA K, SASAGA T, SHIBATO T, et al. Control circuit in an in-pipe wireless micro inspection robot[A]. IEEE International Symposium on Micro Mechatronics and Human Science[C]. 2000.59-64.
[12] [12] MATSUOKA T, ASANO M, MITSUISHI S, et al. Improvement of micro machine with piezoelectric driving force actuator[A]. IEEE Sixth International Symposium on Micro Machine and Human Science[C]. Nagoya, Japan. 1995.211-217.
[13] [13] HAYASHI I, IWATSUKI N, IWASHINA S. The Running characteristics of a screw-principle microrobot in a small bent pipe[A]. IEEE Sixth International Symposium on Micro Machine and Human Science[C]. Nagoya, Japan. 1995:225-228.
[14] [14] SUZUMORI K, MIYAGAWA T, KIMURA M, et al. Micro inspection robot for 1-in pipes[A]. IEEE/ASME Transactions on Mechatronics[C]. 1999,4(3):286-292.
[15] [15] IKUTA K, TSUKAMOTO M, HIROSE S. Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope[A]. IEEE International Conference on Robotics and Automation[C]. Philadephia, USA. 1997.427-430.
[16] [16] HOEG H D, SLATKIN A B, BURDICK J. Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope[A]. IEEE International Conference on Robotics and Automation[C]. San Francisco, USA. 2000,4:1599-1606.
[17] [17] DARIO P, CARROZZA M C, LENCIONI L, MAGNANI B, et al. A micro robotic system for colonoscopy[A]. IEEE International Conference on Robotics and Automation[C]. Albuquerque, New Mexico. 1997,4:1567-1572.
[18] [18] PEIRS J, REYNAERTS D, VAN BRUSSEL H. Design of miniature parallel manipulators for integration in a self-propelling endoscope[J]. Sensors and Actuators, 2000,B85:409-417.
[19] [19] KUMAR S, KASSIM I M, ASARI V. Design of a vision-guided microrobotic colonoscopy system[J]. Advanced Robotics, 2000,14(2):87-104.
[20] [20] IDDAN G, MERON G, GLUKHOVSKY A, et al. Wireless capsule endoscopy[J]. Nature,2000,25(5):405-417.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese]. [J]. Optics and Precision Engineering, 2003, 11(4): 326