Journal of the European Optical Society-Rapid Publications, Volume. 19, Issue 1, 2022016(2023)

Neural network modeling of bismuth-doped fiber amplifier

Aleksandr Donodin1,*... Uiara Celine de Moura2, Ann Margareth Rosa Brusin3, Egor Manuylovich1, Vladislav Dvoyrin1, Francesco Da Ros2, Andrea Carena3, Wladek Forysiak1, Darko Zibar2 and Sergei K. Turitsyn1 |Show fewer author(s)
Author Affiliations
  • 1Aston Institute of Photonic Technologies, Aston University, Birmingham, UK
  • 2DTU Fotonik, Technical University of Denmark, Lyngby, Denmark
  • 3Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
  • show less
    Figures & Tables(5)
    a) Experimental setup for BDFA characterization and data sets acquisition; b) Amplifier gain and noise figure as a function of wavelength achieved with 1000 mA pumps currents and −25 dBm signal power; c) Amplifier gain at 1430 nm as a function of total input signal power. TL: tunable laser; MUX: multiplexer; VOA: variable optical attenuator; LD: laser diode; TEC: thermoelectric cooler; Bi: Bi-doped fiber; TFF-WDM: thin film filter wavelength division multiplexer; OSA: optical spectrum analyzer; PM: power meter.
    Neural network architecture for learning the mapping between inputs (signal powers and pump currents) and outputs (gain and NF profiles).
    Probability density functions (PDFs) for gain and NF predictions for a) Case 1; c) Case 2; e) Case 3; the worst and the best gain and NF predictions for b) Case 1; d) Case 2; f) Case 3.
    Maximum absolute error EMAX of gain and NF predictions as a function of training data set size for three different modeling cases indicated in brackets.
    • Table 1. Parameter values for each modeling case.

      View table
      View in Article

      Table 1. Parameter values for each modeling case.

      ParameterCase 1Case 2Case 3
      Training data set
      Pin [dBm] {−25, −20, −15, −10, −5, 0, 5}{−25, −20, −15, −10, −5, 0, 5}[−25 : 5]
      N (63% #x1D49F) 13 23013 2305670
      Testing data set
      Pin [dBm] {−25, −20, −15, −10, −5, 0, 5} [−25 : 5][−25 : 5]
      N (30% #x1D49F) 63002700 2700
    Tools

    Get Citation

    Copy Citation Text

    Aleksandr Donodin, Uiara Celine de Moura, Ann Margareth Rosa Brusin, Egor Manuylovich, Vladislav Dvoyrin, Francesco Da Ros, Andrea Carena, Wladek Forysiak, Darko Zibar, Sergei K. Turitsyn. Neural network modeling of bismuth-doped fiber amplifier[J]. Journal of the European Optical Society-Rapid Publications, 2023, 19(1): 2022016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 18, 2022

    Accepted: Dec. 5, 2022

    Published Online: Aug. 31, 2023

    The Author Email: Donodin Aleksandr (a.donodin@aston.ac.uk)

    DOI:10.1051/jeos/2022016

    Topics