[1] P.J. Winzer, D.T. Neilson, A.R. Chraplyvy. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Exp., 26, 24190-24239(2018).
[2] A. Ferrari, A. Napoli, J.K. Fischer, N. Costa, A. D’Amico, J. Pedro, W. Forysiak, E. Pincemin, A. Lord, A. Stavdas, J.P.F.-P. Gimenez, G. Roelkens, N. Calabretta, S. Abrate, B. Sommerkorn-Krombholz, V. Curri. Assessment on the achievable throughput of multi-band ITU-T G. 652.D fiber transmission systems. J. Lightwave Technol., 38, 4279-4291(2020).
[3] A.D. Ellis, J. Zhao, D. Cotter. Approaching the non-linear shannon limit. J. Lightwave Technol., 28, 423-433(2009).
[4] C.D. Boley, J.W. Dawson, L.S. Kiani, P.H. Pax. E-band neodymium-doped fiber amplifier: model and application. Appl. Opt., 58, 2320-2327(2019).
[5] S. Chen, Y. Jung, S.-U. Alam, D.J. Richardson, R. Sidharthan, D. Ho, S. Yoo, J.M. Daniel. Ultra-short wavelength operation of thulium-doped fiber amplifiers and lasers. Opt. Express, 27, 36699-36707(2019).
[6] V. Mikhailov, J. Luo, D. Inniss, M. Yan, Y. Sun, G.S. Puc, R.S. Windeler, P.S. Westbrook, Y. Dulashko, D.J. DiGiovanni. Amplified transmission beyond C-and L-bands: doped fibre amplifiers for 1250–1450 nm range. 2020 European Conference on Optical Communications (ECOC), 1-3(2020).
[7] A. Donodin, V. Dvoyrin, E. Manuylovich, L. Krzczanowicz, W. Forysiak, M. Melkumov, V. Mashinsky, S. Turitsyn. Bismuth doped fibre amplifier operating in E-and S-optical bands. Opt. Mater. Express, 11, 127-135(2021).
[8] Y. Wang, N.K. Thipparapu, D.J. Richardson, J.K. Sahu. Ultra-broadband bismuth-doped fiber amplifier covering a 115-nm bandwidth in the O and E bands. J. Lightwave Technol., 39, 795-800(2021).
[9] I.A. Bufetov, M.A. Melkumov, S.V. Firstov, K.E. Riumkin, A.V. Shubin, V.F. Khopin, A.N. Guryanov, E.M. Dianov. Bi-doped optical fibers and fiber lasers. IEEE J. Sel. Top. Quantum Electron., 20, 111-125(2014).
[10] M.A. Melkumov, V. Mikhailov, A.M. Khegai, K.E. Riumkin, S.V. Firstov, F. Afanasiev, A.N. Guryanov, M. Yan, Y. Sun, J. Luo et al. 25 Gb s−1 data transmission using a bismuth-doped fibre amplifier with a gain peak shifted to 1300 nm. Quantum Electron., 48, 989(2018).
[11] M. Melkumov, V. Mikhailov, A. Hegai, K. Riumkin, P. Westbrook, D. DiGiovanni, E. Dianov. E-band data transmission over 80 km of non-zero dispersion fibre link using bismuth-doped fibre amplifier. Electron. Lett., 53, 1661-1663(2017).
[12] A. Donodin, M. Tan, P. Hazarika, V. Dvoyrin, I. Phillips, P. Harper, S.K. Turitsyn, W. Forysiak. 30-GBaud dp 16-QAM transmission in the E-band enabled by bismuth-doped fiber amplifiers. Opt. Lett., 47, 5152-5155(2022).
[13] A. Donodin, P. Hazarika, M. Tan, V. Dvoyrin, M. Patel, I. Phillips, P. Harper, S. Turitsyn, W. Forysiak. 195-nm multi-band amplifier enabled by bismuth-doped fiber and discrete Raman amplification. 2022 European Conference on Optical Communication (ECOC), 18–22 September 2022, Basel Switzerland, 1-2(2022).
[14] Y. Ososkov, A. Khegai, S. Firstov, K. Riumkin, S. Alyshev, A. Kharakhordin, A. Lobanov, A. Guryanov, M. Melkumov. Pump-efficient flattop O+E-bands bismuth-doped fiber amplifier with 116 nm−3 dB gain bandwidth. Opt. Exp., 29, 44138-44145(2021).
[15] A. Donodin, V. Dvoyrin, E. Manuylovich, I. Phillips, W. Forysiak, M. Melkumov, V. Mashinsky, S. Turitsyn. 4-channel E-band data transmission over 160 km of SMF-28 using a bismuth-doped fibre amplifier. 2021 Optical Fiber Communications Conference and Exhibition (OFC), 06–10 June 2021, San Francisco, CA, USA, 1-3(2021).
[16] M. Ionescu, A. Ghazisaeidi, J. Renaudier, P. Pecci, O. Courtois. Design optimisation of power-efficient submarine line through machine learning. 2020 Conference on Lasers and Electro-Optics (CLEO), Washington, DC United States, Washington, DC United States, 10–15 May, 1-2(2020).
[17] M.P. Yankov, U.C. De Moura, F. Da Ros. Power evolution modeling and optimization of fiber optic communication systems with edfa repeaters. J. Lightwave Technol., 39, 3154-3161(2021).
[18] D. Zibar, A.M.R. Brusin, U.C. de Moura, F. Da Ros, V. Curri, A. Carena. Inverse system design using machine learning: the Raman amplifier case. J. Lightwave Technol., 38, 736-753(2019).
[19] U.C. De Moura, M.A. Iqbal, M. Kamalian, L. Krzczanowicz, F. Da Ros, A.M.R. Brusin, A. Carena, W. Forysiak, S. Turitsyn, D. Zibar. Multi-band programmable gain Raman amplifier. J. Lightwave Technol., 39, 429-438(2020).
[20] D.M. Baney, P. Gallion, R.S. Tucker. Theory and measurement techniques for the noise figure of optical amplifiers. Opt. Fiber Technol., 6, 122-154(2000).
[21] G.-B. Huang, D.H. Wang, Y. Lan. Extreme learning machines: a survey. Int. J. Mach. Learn. Cyb., 2, 107-122(2011).