Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0600001(2023)

Photonic Neural Networks and Its Applications

Bei Chen1, Zhaoyang Zhang1, Tingge Dai2, Hui Yu1,3, Yuehai Wang1, and Jianyi Yang1、*
Author Affiliations
  • 1College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • 2Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China
  • 3Zhejiang Lab, Hangzhou 310027, Zhejiang, China
  • show less
    References(157)

    [1] McCarthy J, Minsky M L, Rochester N et al. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955[J]. AI Magazine, 27, 12-14(2006).

    [2] Leijnen S, van Veen F. The neural network zoo[J]. Proceedings, 47, 9(2020).

    [5] Chen T S, Du Z D, Sun N H et al. DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning[J]. ACM SIGARCH Computer Architecture News, 42, 269-284(2014).

    [6] Zhang S J, Du Z D, Zhang L et al. Cambricon-X: an accelerator for sparse neural networks[C](2016).

    [7] Merolla P A, Arthur J V, Alvarez-Icaza R et al. Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface[J]. Science, 345, 668-673(2014).

    [8] Pei J, Deng L, Song S et al. Towards artificial general intelligence with hybrid Tianjic chip architecture[J]. Nature, 572, 106-111(2019).

    [11] Waldrop M M. More than moore[J]. Nature, 530, 144-148(2016).

    [12] Ambs P. Optical computing: a 60-year adventure[J]. Advances in Optical Technologies, 2010, 372652(2010).

    [13] Kneale W. Boole and the revival of logic[J]. Mind, LVII, 149-175(1948).

    [14] Jain K, Pratt G W. Optical transistor[J]. Applied Physics Letters, 28, 719-721(1976).

    [15] Athale R A, Lee S H. Development of an optical parallel logic device and a half-adder circuit for digital optical processing[J]. Optical Engineering, 18, 513-517(1979).

    [16] Jenkins B K, Sawchuk A A, Strand T C et al. Sequential optical logic implementation[J]. Applied Optics, 23, 3455-3464(1984).

    [17] Tanida J, Ichioka Y. Optical-logic-array processor using shadowgrams III Parallel neighborhood operations and an architecture of an optical digital-computing system[J]. Journal of the Optical Society of America A, 2, 1245-1253(1985).

    [18] Tanida J, Ichioka Y. OPALS: optical parallel array logic system[J]. Applied Optics, 25, 1565-1570(1986).

    [19] Main T, Feuerstein R J, Jordan H F et al. Implementation of a general-purpose stored-program digital optical computer[J]. Applied Optics, 33, 1619-1628(1994).

    [20] Miller D, Smith S, Seaton C. Optical bistability in semiconductors[J]. IEEE Journal of Quantum Electronics, 17, 312-317(1981).

    [21] Miller D A B. Are optical transistors the logical next step?[J]. Nature Photonics, 4, 3-5(2010).

    [22] Zhuang L M, Roeloffzen C G H, Hoekman M et al. Programmable photonic signal processor chip for radiofrequency applications[J]. Optica, 2, 854-859(2015).

    [23] Pérez D, Gasulla I, Capmany J et al. Reconfigurable lattice mesh designs for programmable photonic processors[J]. Optics Express, 24, 12093-12106(2016).

    [24] Liu W L, Li M, Guzzon R S et al. A fully reconfigurable photonic integrated signal processor[J]. Nature Photonics, 10, 190-195(2016).

    [25] Pérez D, Gasulla I, Crudgington L et al. Multipurpose silicon photonics signal processor core[J]. Nature Communications, 8, 636(2017).

    [26] Perez D, Gasulla I, Fraile F J et al. Silicon photonics rectangular universal interferometer[J]. Laser & Photonics Reviews, 11, 1700219(2017).

    [27] Bogaerts W, Pérez D, Capmany J et al. Programmable photonic circuits[J]. Nature, 586, 207-216(2020).

    [28] Zhou H L, Zhao Y H, Wang X et al. Self-configuring and reconfigurable silicon photonic signal processor[J]. ACS Photonics, 7, 792-799(2020).

    [29] Pérez-López D, Gutiérrez A, Capmany J. Silicon nitride programmable photonic processor with folded heaters[J]. Optics Express, 29, 9043-9059(2021).

    [30] Wang Z, Marandi A, Wen K et al. Coherent Ising machine based on degenerate optical parametric oscillators[J]. Physical Review A, 88, 063853(2013).

    [31] Marandi A, Wang Z, Takata K et al. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine[J]. Nature Photonics, 8, 937-942(2014).

    [32] McMahon P L, Marandi A, Haribara Y et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections[J]. Science, 354, 614-617(2016).

    [33] Inagaki T, Inaba K, Hamerly R et al. Large-scale Ising spin network based on degenerate optical parametric oscillators[J]. Nature Photonics, 10, 415-419(2016).

    [34] Takesue H, Inagaki T. 10 GHz clock time-multiplexed degenerate optical parametric oscillators for a photonic Ising spin network[J]. Optics Letters, 41, 4273-4276(2016).

    [35] Yamamoto Y, Aihara K, Leleu T et al. Coherent Ising machines: optical neural networks operating at the quantum limit[J]. Npj Quantum Information, 3, 49(2017).

    [36] Takesue H, Inagaki T, Inaba K et al. Large-scale coherent Ising machine[J]. Journal of the Physical Society of Japan, 88, 061014(2019).

    [37] Hamerly R, Inagaki T, McMahon P L et al. Experimental investigation of performance differences between coherent Ising machines and a quantum annealer[J]. Science Advances, 5, eaau0823(2019).

    [39] Böhm F, Verschaffelt G, Van der Sande G. A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems[J]. Nature Communications, 10, 3538(2019).

    [40] Babaeian M, Nguyen D T, Demir V et al. A single shot coherent Ising machine based on a network of injection-locked multicore fiber lasers[J]. Nature Communications, 10, 3516(2019).

    [41] Pierangeli D, Marcucci G, Conti C. Large-scale photonic Ising machine by spatial light modulation[J]. Physical Review Letters, 122, 213902(2019).

    [42] Pierangeli D, Marcucci G, Conti C. Adiabatic evolution on a spatial-photonic Ising machine[J]. Optica, 7, 1535-1543(2020).

    [43] Prabhu M, Roques-Carmes C, Shen Y C et al. Accelerating recurrent Ising machines in photonic integrated circuits[J]. Optica, 7, 551-558(2020).

    [44] Okawachi Y, Yu M J, Jang J K et al. Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass[J]. Nature Communications, 11, 4119(2020).

    [45] Tait A N, Nahmias M A, Tian Y et al. Photonic neuromorphic signal processing and computing[M]. Naruse M. Nanophotonic information physics, 183-222(2013).

    [46] Tait A N, Nahmias M A, Shastri B J et al. Broadcast and weight: an integrated network for scalable photonic spike processing[J]. Journal of Lightwave Technology, 32, 3427-3439(2014).

    [47] Shastri B J, Nahmias M A, Tait A N et al. Spike processing with a graphene excitable laser[J]. Scientific Reports, 6, 19126(2016).

    [48] Nahmias M A, Peng H T, de Lima T F et al. A TeraMAC neuromorphic photonic processor[C](2018).

    [49] Chakraborty I, Saha G, Sengupta A et al. Toward fast neural computing using all-photonic phase change spiking neurons[J]. Scientific Reports, 8, 12980(2018).

    [50] Shainline J M, Buckley S M, McCaughan A N et al. Circuit designs for superconducting optoelectronic loop neurons[J]. Journal of Applied Physics, 124, 152130(2018).

    [51] Feldmann J, Youngblood N, Wright C D et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 569, 208-214(2019).

    [52] Mehrabian A, Sorger V J, El-Ghazawi T. A design methodology for post-Moore’s law accelerators: the case of a photonic neuromorphic processor[C], 113-116(2020).

    [53] Miscuglio M, Meng J W, Yesiliurt O et al. Artificial synapse with mnemonic functionality using GSST-based photonic integrated memory[C](2020).

    [54] Skontranis M, Sarantoglou G, Deligiannidis S et al. Time-multiplexed spiking convolutional neural network based on VCSELs for unsupervised image classification[J]. Applied Sciences, 11, 1383(2021).

    [55] Appeltant L, Soriano M C, Van der Sande G et al. Information processing using a single dynamical node as complex system[J]. Nature Communications, 2, 468(2011).

    [56] Vandoorne K. Photonic reservoir computing with a network of coupled semiconductor optical amplifiers[D](2011).

    [57] Vandoorne K, Dambre J, Verstraeten D et al. Parallel reservoir computing using optical amplifiers[J]. IEEE Transactions on Neural Networks, 22, 1469-1481(2011).

    [58] Paquot Y, Duport F, Smerieri A et al. Optoelectronic reservoir computing[J]. Scientific Reports, 2, 287(2012).

    [59] Fiers M A A, van Vaerenbergh T, Wyffels F et al. Nanophotonic reservoir computing with photonic crystal cavities to generate periodic patterns[J]. IEEE Transactions on Neural Networks and Learning Systems, 25, 344-355(2014).

    [60] Vandoorne K, Mechet P, van Vaerenbergh T et al. Experimental demonstration of reservoir computing on a silicon photonics chip[J]. Nature Communications, 5, 3541(2014).

    [61] Vinckier Q, Duport F, Smerieri A et al. High-performance photonic reservoir computer based on a coherently driven passive cavity[J]. Optica, 2, 438-446(2015).

    [62] Bueno J, Brunner D, Soriano M C et al. Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback[J]. Optics Express, 25, 2401-2412(2017).

    [63] Katumba A, Freiberger M, Bienstman P et al. A multiple-input strategy to efficient integrated photonic reservoir computing[J]. Cognitive Computation, 9, 307-314(2017).

    [64] Freiberger M, Katumba A, Bienstman P et al. Training passive photonic reservoirs with integrated optical readout[J]. IEEE Transactions on Neural Networks and Learning Systems, 30, 1943-1953(2019).

    [65] Coarer F D L, Sciamanna M, Katumba A et al. All-optical reservoir computing on a photonic chip using silicon-based ring resonators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 7600108(2018).

    [66] Katumba A, Heyvaert J, Schneider B et al. Low-loss photonic reservoir computing with multimode photonic integrated circuits[J]. Scientific Reports, 8, 2653(2018).

    [67] Katumba A, Freiberger M, Laporte F et al. Neuromorphic computing based on silicon photonics and reservoir computing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 8300310(2018).

    [68] Brunner D, Soriano M C, van der Sande G[M]. Photonic reservoir computing, 8, 19(2019).

    [69] Laporte F, Dambre J, Bienstman P. Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the deep-learning framework PyTorch[J]. Scientific Reports, 9, 5918(2019).

    [70] Tanaka G, Yamane T, Héroux J B et al. Recent advances in physical reservoir computing: a review[J]. Neural Networks, 115, 100-123(2019).

    [71] Mesaritakis C, Syvridis D. Reservoir computing based on transverse modes in a single optical waveguide[J]. Optics Letters, 44, 1218-1221(2019).

    [72] Laporte F. Novel architectures for brain-inspired photonic computers[D](2020).

    [73] Shen Y C, Harris N C, Skirlo S et al. Deep learning with coherent nanophotonic circuits[J]. Nature Photonics, 11, 441-446(2017).

    [74] Lin X, Rivenson Y, Yardimci N T et al. All-optical machine learning using diffractive deep neural networks[J]. Science, 361, 1004-1008(2018).

    [75] Hamerly R, Bernstein L, Sludds A et al. Large-scale optical neural networks based on photoelectric multiplication[J]. Physical Review X, 9, 021032(2019).

    [76] Zuo Y, Li B H, Zhao Y J et al. All-optical neural network with nonlinear activation functions[J]. Optica, 6, 1132-1137(2019).

    [77] Shi B, Calabretta N, Stabile R. Image classification with a 3-layer SOA-based photonic integrated neural network[C](2019).

    [78] Abel S, Horst F, Stark P et al. Silicon photonics integration technologies for future computing systems[C](2019).

    [79] Zhang T, Wang J, Dan Y H et al. Efficient training and design of photonic neural network through neuroevolution[J]. Optics Express, 27, 37150-37163(2019).

    [80] Qian C, Lin X, Lin X B et al. Performing optical logic operations by a diffractive neural network[J]. Light: Science & Applications, 9, 59(2020).

    [81] Miscuglio M, Sorger V J. Photonic tensor cores for machine learning[J]. Applied Physics Reviews, 7, 031404(2020).

    [82] Zhang H, Gu M, Jiang X D et al. An optical neural chip for implementing complex-valued neural network[J]. Nature Communications, 12, 457(2021).

    [84] Mehrabian A, Al-Kabani Y, Sorger V J et al. PCNNA: a photonic convolutional neural network accelerator[C], 169-173(2018).

    [85] Chang J L, Sitzmann V, Dun X et al. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification[J]. Scientific Reports, 8, 12324(2018).

    [86] Liu W C, Liu W Y, Ye Y C et al. HolyLight: a nanophotonic accelerator for deep learning in data centers[C], 1483-1488(2019).

    [87] Xu S F, Wang J, Wang R et al. High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays[J]. Optics Express, 27, 19778-19787(2019).

    [88] Wagner K H, McComb S. Optical rectifying linear units for back-propagation learning in a deep holographic convolutional neural network[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7701318(2020).

    [89] Bangari V, Marquez B A, Miller H et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs)[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7701213(2020).

    [90] Mehrabian A, Miscuglio M, Alkabani Y et al. A winograd-based integrated photonics accelerator for convolutional neural networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 6100312(2020).

    [91] Ahmed M, Al-Hadeethi Y, Bakry A et al. Integrated photonic FFT for photonic tensor operations towards efficient and high-speed neural networks[J]. Nanophotonics, 9, 4097-4108(2020).

    [92] Wu C M, Yu H S, Lee S et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network[J]. Nature Communications, 12, 96(2021).

    [93] Feldmann J, Youngblood N, Karpov M et al. Parallel convolutional processing using an integrated photonic tensor core[J]. Nature, 589, 52-58(2021).

    [94] Xu X Y, Tan M X, Corcoran B et al. 11 TOPS photonic convolutional accelerator for optical neural networks[J]. Nature, 589, 44-51(2021).

    [95] Zhu H H, Zou J, Zhang H et al. Space-efficient optical computing with an integrated chip diffractive neural network[J]. Nature Communications, 13, 1044(2022).

    [96] Woeginger G J[M]. Exact algorithms for NP-hard problems: a survey. Jünger M, Reinelt G, Rinaldi G, 2570, 185-207(2003).

    [97] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biology, 52, 99-115(1990).

    [98] Hebb D O[M]. The organization of behavior: a neuropsychological theory(2005).

    [100] Widrow B, Hoff M E. Adaptive switching circuits[R](1960).

    [101] Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 79, 2554-2558(1982).

    [102] Kohonen T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics, 43, 59-69(1982).

    [103] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 323, 533-536(1986).

    [104] LeCun Y, Boser B, Denker J et al. Handwritten digit recognition with a back-propagation network[C](1990).

    [105] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [106] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [107] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 313, 504-507(2006).

    [108] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C], 1097-1105(2012).

    [109] Taigman Y, Yang M, Ranzato M et al. DeepFace: closing the gap to human-level performance in face verification[C], 1701-1708(2014).

    [111] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions[C](2015).

    [112] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [113] Lugt A V. Signal detection by complex spatial filtering[J]. IEEE Transactions on Information Theory, 10, 139-145(1964).

    [114] Reck M, Zeilinger A, Bernstein H J et al. Experimental realization of any discrete unitary operator[J]. Physical Review Letters, 73, 58-61(1994).

    [115] Clements W R, Humphreys P C, Metcalf B J et al. Optimal design for universal multiport interferometers[J]. Optica, 3, 1460-1465(2016).

    [116] Psaltis D, Brady D, Gu X G et al. Holography in artificial neural networks[M]. Yeh P, Gu C. Landmark papers on photorefractive nonlinear optics, 541-546(1995).

    [117] Goodman J W, Leonberger F J, Kung S Y et al. Optical interconnections for VLSI systems[J]. Proceedings of the IEEE, 72, 850-866(1984).

    [118] Farhat N H, Psaltis D, Prata A et al. Optical implementation of the Hopfield model[J]. Applied Optics, 24, 1469-1475(1985).

    [119] Yu F T, Lu T, Yang X et al. Optical neural network with pocket-sized liquid-crystal televisions[J]. Optics Letters, 15, 863-865(1990).

    [120] Jang J S, Shin S G, Yuk S W et al. Dynamic optical interconnections using holographic lenslet arrays for adaptive neural networks[J]. Optical Engineering, 32, 80-87(1993).

    [121] Saxena I F, Fiesler E. Adaptive multilayer optical neural network with optical thresholding[J]. Optical Engineering, 34, 2435-2440(1995).

    [122] Tait A N, de Lima T F, Zhou E et al. Neuromorphic photonic networks using silicon photonic weight banks[J]. Scientific Reports, 7, 7430(2017).

    [123] Cheng Z G, Ríos C, Pernice W H P et al. On-chip photonic synapse[J]. Science Advances, 3, e1700160(2017).

    [126] Li X Q, Zhang G Y, Huang H H et al. Performance analysis of GPU-based convolutional neural networks[C], 67-76(2016).

    [128] Wang T Y, Ma S Y, Wright L G et al. An optical neural network using less than 1 photon per multiplication[J]. Nature Communications, 13, 123(2022).

    [129] Miscuglio M, Hu Z B, Li S R et al. Massively-parallel amplitude-only Fourier neural network[J]. Optica, 7, 1812-1819(2020).

    [130] Zhou T K, Lin X, Wu J M et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit[J]. Nature Photonics, 15, 367-373(2021).

    [131] Huggins E. Introduction to Fourier optics[J]. The Physics Teacher, 45, 364-368(2007).

    [132] Raeker B O, Grbic A. Compound metaoptics for amplitude and phase control of wave fronts[J]. Physical Review Letters, 122, 113901(2019).

    [133] Fang M Y S, Manipatruni S, Wierzynski C et al. Design of optical neural networks with component imprecisions[J]. Optics Express, 27, 14009-14029(2019).

    [134] Xu S F, Wang J, Shu H W et al. Optical coherent dot-product chip for sophisticated deep learning regression[J]. Light: Science & Applications, 10, 221(2021).

    [135] Lawson C L, Hanson R J[M]. Solving least squares problems(1995).

    [136] Shi B, Calabretta N, Stabile R. Deep neural network through an InP SOA-based photonic integrated cross-connect[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7701111(2020).

    [137] Zang Y B, Chen M H, Yang S G et al. Electro-optical neural networks based on time-stretch method[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7701410(2020).

    [138] Mahjoubfar A, Churkin D V, Barland S et al. Time stretch and its applications[J]. Nature Photonics, 11, 341-351(2017).

    [139] Leshno M, Lin V Y, Pinkus A et al. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[J]. Neural Networks, 6, 861-867(1993).

    [140] George J K, Mehrabian A, Amin R et al. Neuromorphic photonics with electro-absorption modulators[J]. Optics Express, 27, 5181-5191(2019).

    [141] Amin R, George J K, Sun S et al. ITO-based electro-absorption modulator for photonic neural activation function[J]. APL Materials, 7, 081112(2019).

    [142] Tait A N, de Lima T F, Nahmias M A et al. Silicon photonic modulator neuron[J]. Physical Review Applied, 11, 064043(2019).

    [143] Fard M M P, Williamson I A D, Edwards M et al. Experimental realization of arbitrary activation functions for optical neural networks[J]. Optics Express, 28, 12138-12148(2020).

    [144] Dejonckheere A, Duport F, Smerieri A et al. All-optical reservoir computer based on saturation of absorption[J]. Optics Express, 22, 10868-10881(2014).

    [145] Miscuglio M, Mehrabian A, Hu Z B et al. All-optical nonlinear activation function for photonic neural networks[J]. Optical Materials Express, 8, 3851-3863(2018).

    [146] Shi B, Calabretta N, Stabile R. First demonstration of a two-layer all-optical neural network by using photonic integrated chips and SOAs[C](2019).

    [147] Crnjanski J, Krstić M, Totović A et al. Adaptive sigmoid-like and PReLU activation functions for all-optical perceptron[J]. Optics Letters, 46, 2003-2006(2021).

    [148] Mourgias-Alexandris G, Tsakyridis A, Passalis N et al. An all-optical neuron with sigmoid activation function[J]. Optics Express, 27, 9620-9630(2019).

    [149] Jha A, Huang C R, Peng H T et al. Photonic spiking neural networks and graphene-on-silicon spiking neurons[J]. Journal of Lightwave Technology, 40, 2901-2914(2022).

    [150] Wu B, Li H K, Tong W Y et al. Low-threshold all-optical nonlinear activation function based on a Ge/Si hybrid structure in a microring resonator[J]. Optical Materials Express, 12, 970-980(2022).

    [151] Jha A, Huang C R, Prucnal P R. Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics[J]. Optics Letters, 45, 4819-4822(2020).

    [152] Huang C R, Jha A, de Lima T F et al. On-chip programmable nonlinear optical signal processor and its applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 6100211(2021).

    [153] Wang P P, Xiong W J, Huang Z B et al. Diffractive deep neural network for optical orbital angular momentum multiplexing and demultiplexing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 7500111(2022).

    [154] Huang C R, Fujisawa S, de Lima T F et al. A silicon photonic-electronic neural network for fibre nonlinearity compensation[J]. Nature Electronics, 4, 837-844(2021).

    [155] Yang L Y, Zhang L. Recent progress in photonic reservoir neural network[J]. Chinese Journal of Lasers, 48, 1906001(2021).

    [156] Liu J Y, Zhang J G, Li C Y et al. Secure communication via laser chaos synchronization based on reservoir computing[J]. Chinese Journal of Lasers, 49, 1806001(2022).

    [157] Liu Y M, Guo H X, Chen Y H et al. Random singular value decomposition based on optical computation[J]. Acta Optica Sinica, 42, 1920002(2022).

    Tools

    Get Citation

    Copy Citation Text

    Bei Chen, Zhaoyang Zhang, Tingge Dai, Hui Yu, Yuehai Wang, Jianyi Yang. Photonic Neural Networks and Its Applications[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0600001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 15, 2022

    Accepted: Sep. 23, 2022

    Published Online: Mar. 10, 2023

    The Author Email: Yang Jianyi (yangjy@zju.edu.cn)

    DOI:10.3788/LOP222304

    Topics