Acta Optica Sinica, Volume. 45, Issue 6, 0601007(2025)

Sensitivity Analysis of Simultaneous Remote Sensing of Carbon Dioxide and Water Vapor Isotope Using LiDAR

Saifen Yu1...2, Zhen Zhang1,2,*, and Haiyun Xia12 |Show fewer author(s)
Author Affiliations
  • 1School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • 2National Center of Carbon Metrology (Fujian), Nanping 353011, Fujian , China
  • show less
    Figures & Tables(13)
    Mixture absorption spectra of CO2 and H2O at sea level under six atmospheric models in MODTRAN based on HITRAN database. (a) Tropic; (b) mid-latitude summer; (c) mid-latitude winter; (d) sub-arctic summer; (e) sub-arctic winter; (f) 1976 U.S. standard
    Mixture gases absorption spectra of R16 line under standard condition of T=296 K and p=1013 hPa
    FWHM of spectral collision broadening and Doppler broadening at R16 line as functions of altitude. (a) CO2; (b) HD16O
    Relative weight of CO2 and HD16O as a function of pressure at different frequency positions
    One-way optical depth spectra of R16 as functions of altitude. (a) Mixture gases of CO2 and HD16O; (b) CO2
    Inversion errors of column concentration and range resolved concentration of CO2 and HD16O as functions of altitude under the 1976 U.S. standard atmospheric model
    Concentration error as a function of frequency offset for +1 K temperature variation (Different colors represent errors at different relative frequencies and altitudes. The navy blue lines indicate the variation in errors with relative frequency at several typical altitudes, with the corresponding error values displayed on the right axis. The red dashed line represents the neutral point where the error value is zero). (a) CO2 column concentration error; (b) HD16O column concentration error; (c) CO2 range resolved concentration error; (d) HD16O range resolved concentration error
    Concentration error as a function of relative frequency for -0.5 hPa pressure variation (Different colors represent errors at different relative frequencies and altitudes. The navy blue lines indicate the variation in errors with relative frequency at several typical altitudes, with the corresponding error values displayed on the right axis. The red dashed line represents the neutral point where the error value is zero). (a) CO2 column concentration error; (b) HD16O column concentration error; (c) CO2 range resolved concentration error; (d) HD16O range resolved concentration error
    CO2 column concentration error as a function of relative frequency for +0.5 hPa pressure variation (Different colors represent errors at different relative frequencies and altitudes. The red dashed line represents the neutral point with zero sensitivity. The solid and dashed lines in navy blue represent column concentration errors of CO2 at altitudes of 0 km and 60 km, respectively, and the corresponding error values are displayed on the right axis)
    Concentration error as a function of relative frequency for +1 MHz frequency drift (Different colors represent errors at different relative frequencies and altitudes. The navy blue lines indicate the variation in errors with relative frequency at several typical altitudes, with the corresponding error values displayed on the right axis. The red dashed line represents the neutral point where the error value is zero). (a) CO2 column concentration error; (b) HD16O column concentration error; (c) CO2 range resolved concentration error; (d) HD16O range resolved concentration error
    Concentration error as a function of relative frequency for 5% H2O mixing ratio variation under atmospheric models of tropic, mid-latitude summer, mid-latitude winter, sub-arctic summer, sub-arctic winter, and 1976 U.S. standard. (a)‒(f) CO2 column concentration error; (g)‒(l) CO2 range resolved concentration error
    • Table 1. Atmospheric parameters of MODTRAN model at sea level

      View table

      Table 1. Atmospheric parameters of MODTRAN model at sea level

      ModelPressure /MbarTemperature /KDensity /cm-3

      Mixing ratio of

      CO2 /10-6

      Mixing ratio of

      H216O /10-6

      Mixing ratio of

      HD16O /10-6

      11013299.72.450×1019420259008.05
      21013294.22.496×1019420188005.86
      31018272.22.711×101942043201.45
      41010287.22.549×1019420119003.71
      51013257.22.855×101942014100.44
      61013288.22.548×101942077502.42
    • Table 2. Spectral parameters of CO2 and HD16O for R16 line[29]

      View table

      Table 2. Spectral parameters of CO2 and HD16O for R16 line[29]

      Formula

      Wavenumber

      ν /cm-1

      Line intensity S /[cm-1/(molecule·cm-2)]Broadening αPressure shift
      γair /(cm-1·atm-1γself /(cm-1·atm-1δair /(cm-1·atm-1δself /(cm-1·atm-1
      CO26359.96721.761×10-230.0740.102-0.563×10-2-0.599×10-2
      HD16O6360.27838.619×10-260.0950.448-0.135×10-1
      HD16O6359.74772.218×10-260.0970.394-0.786×10-2
    Tools

    Get Citation

    Copy Citation Text

    Saifen Yu, Zhen Zhang, Haiyun Xia. Sensitivity Analysis of Simultaneous Remote Sensing of Carbon Dioxide and Water Vapor Isotope Using LiDAR[J]. Acta Optica Sinica, 2025, 45(6): 0601007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jul. 30, 2024

    Accepted: Oct. 14, 2024

    Published Online: Mar. 27, 2025

    The Author Email: Zhang Zhen (003514@nuist.edu.cn)

    DOI:10.3788/AOS241372

    Topics