Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316009(2023)

Research Progress on Mechanoluminescent Optical Fibers and Their Applications

Mengjia Chen1, Fuguang Chen2, Zhi Chen2, Meilin Gong3、*, Xiaofeng Liu1、**, and Zhijun Ma1,2、***
Author Affiliations
  • 1School of Materials Science and Engineering, Zhejiang University, Hangzhou 310012, Zhejiang, China
  • 2Research Center for Humanoid Sensing, Institute for Intelligent Sensing, Zhejiang Lab, Hangzhou 311121, Zhejiang,China
  • 3Administrative Office of Discipline Construction and Graduate Program, Jinan University, Guangzhou 519070, Zhejiang, China
  • show less
    References(48)

    [1] Fujio Y, Xu C N, Sakata Y et al. Visualization of relative strain distribution for carbon fiber reinforced plastic plate by mechanoluminescent technique[J]. ECS Transactions, 75, 23-28(2017).

    [2] Jha P, Chandra B P. Survey of the literature on mechanoluminescence from 1605 to 2013[J]. Luminescence: the Journal of Biological and Chemical Luminescence, 29, 977-993(2014).

    [3] Akiyama M, Xu C N, Liu Y et al. Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity[J]. Journal of Luminescence, 97, 13-18(2002).

    [4] Zhang H, Wei Y, Huang X et al. Recent development of elastico-mechanoluminescent phosphors[J]. Journal of Luminescence, 207, 137-148(2019).

    [5] Sun N, Ke Q F, Fang Y Z et al. A wearable dual-mode strain sensing yarn: based on the conductive carbon composites and mechanoluminescent layer with core-sheath structures[J]. Materials Research Bulletin, 164, 112259(2023).

    [6] Fujio Y, Xu C N, Terasaki N. Flexible mechanoluminescent SrAl2O4∶Eu film with tracking performance of CFRP fracture phenomena[J]. Sensors, 22, 5476(2022).

    [7] Pan X, Zhuang Y X, Mei L F et al. Mechanism of electroluminescent materials: review, progress and challenges[J]. Journal of the Chinese Ceramic Society, 50, 3147-3164(2022).

    [8] Terasaki N, Xu C N. Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor[J]. IEEE Sensors Journal, 13, 3999-4004(2013).

    [9] Zhang J, Bao L K, Lou H Q et al. Flexible and stretchable mechanoluminescent fiber and fabric[J]. Journal of Materials Chemistry C, 5, 8027-8032(2017).

    [10] Jeong S M, Song S, Seo H J et al. Battery-free, human-motion-powered light-emitting fabric: mechanoluminescent textile[J]. Advanced Sustainable Systems, 1, 1700126(2017).

    [11] Zink J I, Beese W, Schindler J W et al. Triboluminescence of silica core optical fibers[J]. Applied Physics Letters, 40, 110-112(1982).

    [12] Liang H H, He Y C, Chen M H et al. Self-powered stretchable mechanoluminescent optical fiber strain sensor[J]. Advanced Intelligent Systems, 3, 2100035(2021).

    [13] Chang S L, Deng Y A, Li N et al. Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile[J]. Nano Research, 1-8(2023).

    [14] Wang H P. Influence of interfacial effect between distributed optical fiber sensors and monitored structures[J]. Acta Optica Sinica, 42, 0206004(2022).

    [15] Zhang H, Guo H T, Xu Y T et al. Research progress in chalcogenide glass fibers for infrared laser delivery[J]. Chinese Journal of Lasers, 49, 0101007(2022).

    [16] Chandra B P. Mechanoluminescence[C]. Vij D R. Luminescence of solids, 361-389(1998).

    [17] Zhang J C, Wang X S, Marriott G et al. Trap-controlled mechanoluminescent materials[J]. Progress in Materials Science, 103, 678-742(2019).

    [18] Terasaki N, Zhang H W, Imai Y et al. Hybrid material consisting of mechanoluminescent material and TiO2 photocatalyst[J]. Thin Solid Films, 518, 473-476(2009).

    [19] Wang X D, Ling R, Zhang Y F et al. Oxygen-assisted preparation of mechanoluminescent ZnS: Mn for dynamic pressure mapping[J]. Nano Research, 11, 1967-1976(2018).

    [20] Su M, Li P H, Zheng S H et al. Largely enhanced elastico-mechanoluminescence of CaZnOS: Mn2+ by co-doping with Nd3+ ions[J]. Journal of Luminescence, 217, 116777(2020).

    [21] Chen H M, Wu L, Sun T Q et al. Intense green elastico-mechanoluminescence from KZn(PO3)3∶Tb3+[J]. Applied Physics Letters, 116, 051904(2020).

    [22] Li W Y, Xie R J, Zhou T L et al. Synthesis of the phase pure Ba3Si6O12N2∶u2+ green phosphor and its application in high color rendition white LEDs[J]. Dalton Transactions, 43, 6132-6138(2014).

    [23] Ning J J, Zheng Y T, Ren Y T et al. MgF2∶Mn2+: novel material with mechanically-induced luminescence[J]. Science Bulletin, 67, 707-715(2022).

    [24] Chandra V K, Chandra B P, Jha P. Self-recovery of mechanoluminescence in ZnS∶Cu and ZnS∶Mn phosphors by trapping of drifting charge carriers[J]. Applied Physics Letters, 103, 161113(2013).

    [25] Sohn K S, Timilsina S, Singh S P et al. Mechanically driven luminescence in a ZnS∶Cu-PDMS composite[J]. APL Materials, 4, 106102(2016).

    [26] Wei Y B, Wu Z, Jia Y M et al. Piezoelectrically-induced stress-luminescence phenomenon in CaAl2O4: Eu2+[J]. Journal of Alloys and Compounds, 646, 86-89(2015).

    [27] Jia Y, Yei M, Jia W Y. Stress-induced mechanoluminescence in SrAl2O4∶Eu2+, Dy3+[J]. Optical Materials, 28, 974-979(2006).

    [28] Chen C J, Zhuang Y X, Li X Y et al. Achieving remote stress and temperature dual-modal imaging by double-lanthanide-activated mechanoluminescent materials[J]. Advanced Functional Materials, 31, 2101567(2021).

    [29] Peng D F, Chen B, Wang F. Recent advances in doped mechanoluminescent phosphors[J]. ChemPlusChem, 80, 1209-1215(2015).

    [30] Chandra B P, Chandra V K, Jha P. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II-VI semiconductor phosphors[J]. Physica B: Condensed Matter, 463, 62-67(2015).

    [31] Chandra B P, Baghel R N, Luka A K et al. Strong mechanoluminescence induced by elastic deformation of rare-earth-doped strontium aluminate phosphors[J]. Journal of Luminescence, 129, 760-766(2009).

    [32] Chen C J, Zhuang Y X, Tu D et al. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO[J]. Nano Energy, 68, 104329(2020).

    [33] Ma R H, Wei X Y, Wang C F et al. Reproducible mechanical-to-optical energy conversion in Mn (II) doped sphalerite ZnS[J]. Journal of Luminescence, 232, 117838(2021).

    [34] Peng D F, Jiang Y, Huang B L et al. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset[J]. Advanced Materials, 32, 1907747(2020).

    [35] Wang W, Peng D F, Zhang H L et al. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging[J]. Optics Communications, 395, 24-28(2017).

    [36] Huang B L, Peng D F, Pan C F. “Energy Relay Center” for doped mechanoluminescence materials: a case study on Cu-doped and Mn-doped CaZnOS[J]. Physical Chemistry Chemical Physics, 19, 1190-1208(2017).

    [37] Zhang J C, Gao N, Li L et al. Discovering and dissecting mechanically excited luminescence of Mn2+ activators via matrix microstructure evolution[J]. Advanced Functional Materials, 31, 2100221(2021).

    [38] Zhang J C, Zhao L Z, Long Y Z et al. Color manipulation of intense multiluminescence from CaZnOS∶Mn2+ by Mn2+ concentration effect[J]. Chemistry of Materials, 27, 7481-7489(2015).

    [39] Zhang J C, Xu C N, Kamimura S et al. An intense elastico-mechanoluminescence material CaZnOS∶Mn2+ for sensing and imaging multiple mechanical stresses[J]. Optics Express, 21, 12976-12986(2013).

    [40] Tang H T, Zhao L, Liu Z C et al. A lanthanide-doped glass-ceramic fiber for stress sensing[J]. Cell Reports Physical Science, 3, 101093(2022).

    [41] Cao J K, Ding Y C, Sajzew R et al. Mechanoluminescence from highly transparent ZGO: Cr spinel glass ceramics[J]. Optical Materials Express, 12, 3238(2022).

    [42] Chandra B P, Chandra V K, Jha P. Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials[J]. Physica B: Condensed Matter, 461, 38-48(2015).

    [43] Wang X D, Peng D F, Huang B L et al. Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications[J]. Nano Energy, 55, 389-400(2019).

    [44] Matsui H, Xu C N, Liu Y et al. Origin of mechanoluminescence from Mn-activated ZnAl2O4: triboelectricity-induced electroluminescence[J]. Physical Review B, 69, 235109(2004).

    [45] Dubernet M, Gueguen Y, Houizot P et al. Evidence and modeling of mechanoluminescence in a transparent glass particulate composite[J]. Applied Physics Letters, 107, 151906(2015).

    [46] Hou B, Yi L Y, Li C et al. An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation[J]. Nature Electronics, 5, 682-693(2022).

    [47] Yang W F, Gong W, Gu W et al. Self-powered interactive fiber electronics with visual-digital synergies[J]. Advanced Materials, 33, 2104681(2021).

    [48] Zhao J Y, Song S, Mu X et al. Programming mechanoluminescent behaviors of 3D printed cellular structures[J]. Nano Energy, 103, 107825(2022).

    Tools

    Get Citation

    Copy Citation Text

    Mengjia Chen, Fuguang Chen, Zhi Chen, Meilin Gong, Xiaofeng Liu, Zhijun Ma. Research Progress on Mechanoluminescent Optical Fibers and Their Applications[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: May. 11, 2023

    Accepted: Jun. 12, 2023

    Published Online: Jul. 25, 2023

    The Author Email: Gong Meilin (Gongml@jnu.edu.cn), Liu Xiaofeng (xfliu@zju.edu.cn), Ma Zhijun (zhijma@zhejianglab.com)

    DOI:10.3788/LOP231286

    Topics