Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 218(2024)
Enhanced Performance of Ag2Se-Based Flexible Thermoelectric Films Based on Functional Units Ordering Strategy
[1] [1] WANG Y, YANG L, SHI X L, et al. Flexible thermoelectric materials and generators: Challenges and innovations[J]. Adv Mater, 2019, 31(29): e1807916.
[2] [2] BAHRAMI A, SCHIERNING G, NIELSCH K. Waste recycling in thermoelectric materials[J]. Adv Energy Mater, 2020, 10(19): 1904159.
[3] [3] LI X, CAI K F, GAO M Y, et al. Recent advances in flexible thermoelectric films and devices[J]. Nano Energy, 2021, 89: 106309.
[4] [4] QU D W, LI X, WANG H F, et al. Assembly strategy and performance evaluation of flexible thermoelectric devices[J]. Adv Sci, 2019, 6(15): 1900584.
[5] [5] WANG H, PEI Y Z, LALONDE A D, et al. Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe[J]. Proc Natl Acad Sci USA, 2012, 109(25): 9705-9709.
[6] [6] SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: From materials and structures to devices[J]. Chem Rev, 2020, 120(15): 7399-7515.
[7] [7] CAO T Y, SHI X L, CHEN Z G. Advances in the design and assembly of flexible thermoelectric device[J]. Prog Mater Sci, 2023, 131: 101003.
[8] [8] NOZARIASBMARZ A, COLLINS H, DSOUZA K, et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems[J]. Appl Energy, 2020, 258: 114069.
[9] [9] SOLEIMANI Z, ZORAS S, CERANIC B, et al. A review on recent developments of thermoelectric materials for room-temperature applications[J]. Sustain Energy Technol Assess, 2020, 37: 100604.
[10] [10] ZHU B, LIU X X, WANG Q, et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials[J]. Energy Environ Sci, 2020, 13(7): 2106-2114.
[11] [11] BAO D Y, CHEN J, YU Y, et al. Texture-dependent thermoelectric properties of nano-structured Bi2Te3[J]. Chem Eng J, 2020, 388: 124295.
[12] [12] PEI J, CAI B W, ZHUANG H L, et al. Bi2Te3-based applied thermoelectric materials: Research advances and new challenges[J]. Natl Sci Rev, 2020, 7(12): 1856-1858.
[13] [13] NI D, SONG H J, CHEN Y X, et al. Free-standing highly conducting PEDOT films for flexible thermoelectric generator[J]. Energy, 2019, 170: 53-61.
[14] [14] LIU S Q, LI H, LI P C, et al. Recent advances in polyaniline-based thermoelectric composites[J]. CCS Chem, 2021, 3(10): 2547-2560.
[15] [15] LI M, LUO C, ZHANG J, et al. Electrochemical doping tuning of flexible polypyrrole film with enhanced thermoelectric performance[J]. Surf Interfaces, 2020, 21: 100759.
[16] [16] ZHANG Q, SUN Y M, XU W, et al. Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions[J]. Energy Environ Sci, 2012, 5(11): 9639-9644.
[17] [17] WANG L M, ZHANG Z M, LIU Y C, et al. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase[J]. Nat Commun, 2018, 9(1): 3817.
[18] [18] VARGHESE T, DUN C C, KEMPF N, et al. Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering[J]. Adv Funct Mater, 2020, 30(5): 1905796.
[19] [19] JIN Q, JIANG S, ZHAO Y, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold[J]. Nat Mater, 2019, 18(1): 62-68.
[20] [20] FERHAT M, NAGAO J. Thermoelectric and transport properties of β-Ag2Se compounds[J]. J Appl Phys, 2000, 88(2): 813-816.
[21] [21] LI D, ZHANG J H, LI J M, et al. High thermoelectric performance for an Ag2Se-based material prepared by a wet chemical method[J]. Mater Chem Front, 2020, 4(3): 875-880.
[22] [22] HOU S H, LIU Y J, YIN L, et al. High performance wearable thermoelectric generators using Ag2Se films with large carrier mobility[J]. Nano Energy, 2021, 87: 106223.
[23] [23] LEI Y, QI R J, CHEN M Y, et al. Microstructurally tailored thin β-Ag2Se films toward commercial flexible thermoelectrics[J]. Adv Mater, 2022, 34(7): 2104786.
[24] [24] LIU Y, LU Y M, WANG Z X, et al. High performance Ag2Se films by a one-pot method for a flexible thermoelectric generator[J]. J Mater Chem A, 2022, 10(48): 25644-25651.
[25] [25] HU Q X, LIU W D, ZHANG L, et al. SWCNTs/Ag2Se film with superior bending resistance and enhanced thermoelectric performance via in situ compositing[J]. Chem Eng J, 2023, 457: 141024.
[26] [26] DING Y F, QIU Y, CAI K F, et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator[J]. Nat Commun, 2019, 10(1): 841.
[27] [27] LU Y, QIU Y, CAI K, et al. Ultrahigh performance PEDOT/Ag2Se/ CuAgSe composite film for wearable thermoelectric power generators[J]. Mater Today Phys, 2020, 14: 100223.
[28] [28] LU Y, QIU Y, CAI K F, et al. Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices[J]. Energy Environ Sci, 2020, 13(4): 1240-1249.
[29] [29] JIANG C, DING Y F, CAI K F, et al. Ultrahigh performance of n-type Ag2Se films for flexible thermoelectric power generators[J]. ACS Appl Mater Interfaces, 2020, 12(8): 9646-9655.
[30] [30] JIANG C, WEI P, DING Y F, et al. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting[J]. Nano Energy, 2021, 80: 105488.
[31] [31] LU Y M, LIU Y, LI Y T, et al. The influence of Ga doping on preparation and thermoelectric properties of flexible Ag2Se films[J]. Compos Commun, 2021, 27: 100895.
[32] [32] GAO Q, WANG W, LU Y, et al. High power factor Ag/Ag2Se composite films for flexible thermoelectric generators[J]. ACS Appl Mater Interfaces, 2021, 13(12): 14327-14333.
[33] [33] WANG Z X, GAO Q, WANG W, et al. High performance Ag2Se/Ag/PEDOT composite films for wearable thermoelectric power generators[J]. Mater Today Phys, 2021, 21: 100553.
[34] [34] LI X, LU Y, CAI K F, et al. Exceptional power factor of flexible Ag/Ag2Se thermoelectric composite films[J]. Chem Eng J, 2022, 434: 134739.
[35] [35] LI Y T, LOU Q, YANG J M, et al. Exceptionally high power factor Ag2Se/Se/polypyrrole composite films for flexible thermoelectric generators[J]. Adv Funct Mater, 2022, 32(7): 2106902.
[36] [36] PEI Y Z, GIBBS Z M, GLOSKOVSKII A, et al. Optimum carrier concentration in n-type PbTe thermoelectrics[J]. Adv Energy Mater, 2014, 4(13): 1400486.
[37] [37] CHEN Z W, JIAN Z Z, LI W, et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence[J]. Adv Mater, 2017, 29(23): 1606768.
[38] [38] ZHU T J, XU Z J, HE J, et al. Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi,Sb)2Te3 thermoelectric materials[J]. J Mater Chem A, 2013, 1(38): 11589-11594.
[39] [39] JI J L, TANG Q H, YAO M J, et al. Functional-unit-based material design: Ultralow thermal conductivity in thermoelectrics with linear triatomic resonant bonds[J]. J Am Chem Soc, 2022, 144(40): 18552-18561.
[40] [40] LI S, LOU X N, ZOU B, et al. Introducing PbSe quantum dots and manipulating lattice strain contributing to high thermoelectric performance in polycrystalline SnSe[J]. Mater Today Phys, 2021, 21: 100542.
[41] [41] CHEN K X, LI L. Ordered structures with functional units as a paradigm of material design[J]. Adv Mater, 2019, 31(32): e1901115.
[42] [42] JIANG X M, DENG S Q, WHANGBO M H, et al. Material research from the viewpoint of functional motifs[J]. Natl Sci Rev, 2022, 9(7): nwac017.
[43] [43] WEI Q P, LIU G S, ZHU C W, et al. Ordered structures with functional units (OSFU) enabled highly robust diamond anode for electrochemical decomposing of organic pollutants[J]. Chem Eng J, 2020, 397: 125465.
[44] [44] ZHAO W L, JIAO J M, SHE Y H, et al. Tailored ordered structures with functional units of distorted [NbO6] and antiparallel [GeO4] for enhanced birefringence in germanate crystal[J]. Adv Optical Mater, 2022, 10(22): 2201704.
[45] [45] LI Z M, GAO X Y, YANG J K, et al. Designing ordered structure with piezoceramic actuation units (OSPAU) for generating continual nanostep motion[J]. Adv Sci, 2020, 7(16): 2001155.
[46] [46] PENG G Y, HU L, QU W B, et al. Structural-functional unit ordering for high-performance electron-correlated materials[J]. Interdiscip Mater, 2023, 2(1): 30-52.
[47] [47] ROYCHOWDHURY S, GHOSH T, ARORA R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2[J]. Science, 2021, 371(6530): 722-727.
[48] [48] ZHAO W Y, LIU Z Y, SUN Z G, et al. Superparamagnetic enhancement of thermoelectric performance[J]. Nature, 2017, 549(7671): 247-251.
[49] [49] DU B S, LAI X F, LIU Q L, et al. Spark plasma sintered bulk nanocomposites of Bi2Te2.7Se0.3 nanoplates incorporated Ni nanoparticles with enhanced thermoelectric performance[J]. ACS Appl Mater Interfaces, 2019, 11(35): 31816-31823.
[50] [50] LI C C, MA S F, WEI P, et al. Magnetism-induced huge enhancement of the room-temperature thermoelectric and cooling performance of p-type BiSbTe alloys[J]. Energy Environ Sci, 2020, 13(2): 535-544.
[51] [51] HU Y, NIE X L, KE S Q, et al. Tuning thermoelectric conversion performance of BiSbTe/epoxy flexible films with dot magnetic arrays[J]. ACS Appl Mater Interfaces, 2023, 15(5): 7112-7119.
[52] [52] LIANG J S, WANG T, QIU P F, et al. Flexible thermoelectrics: From silver chalcogenides to full-inorganic devices[J]. Energy Environ Sci, 2019, 12(10): 2983-2990.
[53] [53] WU M M, CAI K F, LI X, et al. Ultraflexible and high-thermoelectric-performance sulfur-doped Ag2Se film on nylon for power generators[J]. ACS Appl Mater Interfaces, 2022, 14(3): 4307-4315.
[54] [54] TANG S L, HE C S, LI D, et al. Precursor reactivity differentiation for single-step preparation of Ag2Se@Ag2S core-shell nanocrystals with distinct absorption and emission properties enabling sensitive near-infrared photodetection[J]. J Mater Sci, 2018, 53(16): 11355-11366.
[55] [55] PEREZ-TABORDA J A, CABALLERO-CALERO O, VERA- LONDONO L, et al. High thermoelectric zT in n-type silver selenide films at room temperature[J]. Adv Energy Mater, 2018, 8(8): 1702024.
[56] [56] WANG T, CHEN H Y, QIU P F, et al. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity[J]. Acta Phys Sin, 2019, 68(9): 090201.
[57] [57] WU M M, LI J J, LIU Y, et al. High thermoelectric performance and ultrahigh flexibility Ag2S1-xSex film on a nylon membrane[J]. ACS Appl Mater Interfaces, 2023, 15(6): 8415-8423.
[58] [58] KHAN W S, HAMADNEH N N, KHAN W A. Prediction of thermal conductivity of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers using artificial neural network and prey-predator algorithm[J]. PLoS One, 2017, 12(9): e0183920.
[59] [59] SUN Y G, YIN Y D, MAYERS B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone)[J]. Chem Mater, 2002, 14(11): 4736-4745.
[60] [60] HAO L, YU D M. Progress of conductive polypyrrole nanocomposites[J]. Synth Met, 2022, 290: 117138.
Get Citation
Copy Citation Text
WANG Zixing, LI Jiajia, LIU Ying, CAI Kefeng. Enhanced Performance of Ag2Se-Based Flexible Thermoelectric Films Based on Functional Units Ordering Strategy[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 218
Received: Jun. 20, 2023
Accepted: --
Published Online: Jul. 30, 2024
The Author Email: Kefeng CAI (kfcai@tongji.edu.cn)
CSTR:32186.14.