Infrared and Laser Engineering, Volume. 50, Issue 8, 20210368(2021)
Longwave mid-IR femtosecond pulse sources driven by ultrafast fiber lasers (Invited)
[1] [1] Crowder J G, Smith S D, Vass A, et al. Infrared Methods f Gas Detection[M]Krier A. Infrared Semiconduct Optoelectronics. [S. l.]: Springer, 2006: 595613.
[2] Cossel K C, Waxman E M, Finneran I A, et al. Gas-phase broadband spectroscopy using active sources: Progress, status, and applications [invited][J]. Journal of the Optical Society of America B, 34, 104-129(2017).
[3] [3] Ilev I K, Waynant R W. infrared Biomedical Applications[M]Krier A. Infrared Semiconduct Optoelectronics. [S. l.]: Springer, 2006 : 615634.
[4] Walsh M J, Reddy R K, Bhargava R. Label-free biomedical imaging with mid-ir spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1502-1513(2012).
[5] Pilling M, Gardner P. Fundamental developments in infrared spectroscopic imaging for biomedical applications[J]. Chemical Society Reviews, 45, 1935-1957(2016).
[6] Thorpe M J, Balslev-Clausen D, Kirchner M S, et al. Cavity-enhanced optical frequency comb spectroscopy: Application to human breath analysis[J]. Optics Express, 16, 2387-2397(2008).
[7] Pupeza I, Huber M, Trubetskov M, et al. Field-resolved infrared spectroscopy of biological systems[J]. Nature, 577, 52-59(2020).
[8] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).
[9] Chang G, Wei Z. Ultrafast fiber lasers: An expanding versatile toolbox[J]. iScience, 23, 101101(2020).
[10] Biegert J, Bates P K, Chalus O. New mid-infrared light sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 531-540(2012).
[11] Swiderski J. High-power mid-infrared supercontinuum sources: Current status and future perspectives[J]. Progress in Quantum Electronics, 38, 189-235(2014).
[12] Petrov V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals[J]. Progress in Quantum Electronics, 42, 1-106(2015).
[13] Pires H, Baudisch M, Sanchez D, et al. Ultrashort pulse generation in the mid-IR[J]. Progress in Quantum Electronics, 43, 1-30(2015).
[14] Vainio M, Halonen L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy[J]. Physical Chemistry Chemical Physics, 18, 4266-4294(2016).
[15] Cao Q, Kärtner F X, Chang G. Towards high power longwave mid-ir frequency combs: Power scalability of high repetition-rate difference-frequency generation[J]. Optics Express, 28, 1369-1384(2020).
[16] Moses J, Huang S-W. Conformal profile theory for performance scaling of ultrabroadband optical parametric chirped pulse amplification[J]. Journal of the Optical Society of America B, 28, 812-831(2011).
[17] Zhou G, Cao Q, Kärtner F X, et al. Energy scalable, offset-free ultrafast mid-infrared source harnessing self-phase-modulation-enabled spectral selection[J]. Optics Letters, 43, 2953-2956(2018).
[18] Butler T P, Gerz D, Hofer C, et al. Watt-scale 50-mHz source of single-cycle waveform-stable pulses in the molecular fingerprint region[J]. Optics Letters, 44, 1730-1733(2019).
[19] [19] Ye J, Cundiff S T. Femtosecond Optical Frequency Comb: Principle, Operation, Applications[M]. Boston, MA: Springer, 2005.
[20] Diddams S A. The evolving optical frequency comb [invited][J]. Journal of the Optical Society of America B, 27, B51-B62(2010).
[21] Picqué N, Hänsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).
[22] Liu W, Li C, Zhang Z, et al. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: An energy scalable approach[J]. Optics Express, 24, 15328-15340(2016).
[23] Liu W, Chia S-H, Chung H-Y, et al. Energetic ultrafast fiber laser sources tunable in 1030–1215 nm for deep tissue multi-photon microscopy[J]. Optics Express, 25, 6822-6831(2017).
[24] Chung H Y, Liu W, Cao Q, et al. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 microm[J]. Optics Express, 25, 15760-15771(2017).
[25] Chung H-Y, Liu W, Cao Q, et al. Megawatt peak power tunable femtosecond source based on self-phase modulation enabled spectral selection[J]. Optics Express, 26, 3684-3695(2018).
[26] Chen R, Chang G. Pre-chirp managed self-phase modulation for efficient generation of wavelength-tunable energetic femto-second pulses[J]. Journal of the Optical Society of America B, 37, 2388-2397(2020).
[27] Zhou G, Xin M, Kaertner F X, et al. Timing jitter of raman solitons[J]. Optics Letters, 40, 5105-5108(2015).
[28] Hua Y, Zhou G, Liu W, et al. Femtosecond two-color source synchronized at 100-as-precision based on spm-enabled spectral selection[J]. Optics Letters, 45, 3410-3413(2020).
[29] Kador L, Haarer D, Allakhverdiev K R, et al. Phase‐matched second‐harmonic generation at 789.5 nm in a gase crystal[J]. Applied Physics Letters, 69, 731-733(1996).
[30] [30] Pupeza I, Sánchez D, Pronin O, et al. Compact 0.1W source of octavespanning infrared femtosecond pulses centered at 10 µm[C]CLEO, 2014.
[31] Berger V. Nonlinear photonic crystals[J]. Physical Review Letters, 81, 4136-4139(1998).
[32] Al-Kadry A M, Strickland D. Generation of 400 μw at 17.5 μm using a two-color Yb fiber chirped pulse amplifier[J]. Optics Letters, 36, 1080-1082(2011).
[33] Yao Y, Knox W H. Difference frequency generation of femtosecond mid infrared pulses employing intense stokes pulses excitation in a photonic crystal fiber[J]. Optics Express, 20, 25275-25283(2012).
[34] Hajialamdari M, Strickland D. Tunable mid-infrared source from an ultrafast two-color Yb: Fiber chirped-pulse amplifier[J]. Optics Letters, 37, 3570-3572(2012).
[35] Yao Y, Knox W H. Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers[J]. Optics Express, 21, 26612-26619(2013).
[36] Sánchez D, Hemmer M, Baudisch M, et al. Broadband mid-IR frequency comb with CdSiP2 and AgGaS2 from an Er, Tm: Ho fiber laser[J]. Optics Letters, 39, 6883-6886(2014).
[37] Lee K F, Hensley C J, Schunemann P G, et al. Mid-infrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide[J]. Optics Express, 25, 17411-17416(2017).
[38] Romero-Alvarez R, Pettus R, Wu Z, et al. Two-color fiber amplifier for short-pulse, mid-infrared generation[J]. Optics Letters, 33, 1065-1067(2008).
[39] Winters D G, Schlup P, Bartels R A. Subpicosecond fiber-based soliton-tuned mid-infrared source in the 9.7-14.9 microm wavelength region[J]. Opt Lett, 35, 2179-2181(2010).
[40] Phillips C R, Jiang J, Mohr C, et al. Widely tunable midinfrared difference frequency generation in orientation-patterned gaas pumped with a femtosecond Tm-fiber system[J]. Optics Letters, 37, 2928-2930(2012).
[41] Ruehl A, Gambetta A, Hartl I, et al. Widely-tunable mid-infrared frequency comb source based on difference frequency generation[J]. Optics Letters, 37, 2232-2234(2012).
[42] Gambetta A, Coluccelli N, Cassinerio M, et al. Milliwatt-level frequency combs in the 8-14 μm range via difference frequency generation from an Er: Fiber oscillator[J]. Opt Lett, 38, 1155-1157(2013).
[43] Sotor J, Martynkien T, Schunemann P G, et al. All-fiber mid-infrared source tunable from 6 to 9 μm based on difference frequency generation in op-gap crystal[J]. Opt Express, 26, 11756-11763(2018).
[44] Krzempek K, Tomaszewska D, Głuszek A, et al. Stabilized all-fiber source for generation of tunable broadband FECO-free mid-IR frequency comb in the 7 – 9 µm range[J]. Optics Express, 27, 37435-37445(2019).
[45] Huang J, Pang M, Jiang X, et al. Sub-two-cycle octave-spanning mid-infrared fiber laser[J]. Optica, 7, 574-579(2020).
[46] Zhang J, Fai Mak K, Nagl N, et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm−1[J]. Light: Science & Applications, 7, 17180-17180(2018).
[47] Gaida C, Gebhardt M, Heuermann T, et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation[J]. Light: Science & Applications, 7, 94(2018).
[48] Vasilyev S, Moskalev I S, Smolski V O, et al. Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-μm pulses[J]. Optica, 6, 111-114(2019).
[49] Wang Q, Zhang J, Kessel A, et al. Broadband mid-infrared coverage(2-17 μm) with few-cycle pulses via cascaded parametric processes[J]. Opt Lett, 44, 2566-2569(2019).
Get Citation
Copy Citation Text
Yang Liu, Qian Cao, Xincai Diao, Zhiyi Wei, Guoqing Chang. Longwave mid-IR femtosecond pulse sources driven by ultrafast fiber lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210368
Category: Special issue—ultrafast and ultraintense mid-infrared laser technology
Received: Jun. 3, 2021
Accepted: --
Published Online: Nov. 2, 2021
The Author Email: