Optical Communication Technology, Volume. 44, Issue 6, 46(2020)

Algorithm of logical topology mapping for resource optimization based on reinforcement learning

WANG Ya'nan1, YANG Xue2, ZHUANG Haotao3, ZHU Min2, KANG Le2, and ZHAO Yongli3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(16)

    [3] [3] YU M, YI Y, REXFORD J, et al. Rethinking virtual network embedding: substrate support for path splitting and migration[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 17-29.

    [4] [4] FISCHER A, BOTERO J F, BECK M T, et al. Virtual Network Embedding: A Survey[J]. IEEE Communications Surveys & Tutorials, 2013, 15(4): 1888-1906.

    [5] [5] FENGQING L, QINGJI Z, XU Z, et al. Virtual Topology Reconfigurat-

              ion in WDM Optical Networks[J]. ACTA PHOTONICA SINICA, 2003, 32(10): 1175-1180.

    [6] [6] CHOWDHURY M, RAHMAN M R, BOUTABA R. Virtual network embedding algorithms with coordinated node and link mapping [J]. IEEE/ACM Transactions on networking, 2011, 20(1): 206-219.

    [7] [7] cation Review, 2011, 41(2): 38-47.

              CHENG X, SU S, ZHANG Z, et al. Virtual network embedding through topology-aware node ranking[J]. ACM SIGCOMM Computer Communi-

    [8] [8] CHOWDHURY N M, RAHMAN M R, BOUTABA R. Virtual network embedding with coordinated node and link mapping [C]// IEEE INFOCOM 2009, Apr 19-25, 2009, Riode Janeiro, Brazil. Piscataway: IEEE, 2009:783-791.

    [9] [9] YOU X, WANG X, CHEN A, et al. A coordinated algorithm with resource evaluation for service function chain allocation [C]// 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Oct. 8-10, 2016, Atlanta, USA. Piscataway: IEEE, 2016: 45-49.

    [10] [10] WANG Y, LU P, LU W, et al. Cost-efficient virtual network function graph (vNFG) provisioning in multidomain elastic optical networks[J]. Journal of Lightwave Technology, 2017, 35(13): 2712-2723.

    [11] [11] WHITE, DOUGLAS J. Dynamic programming, Markov chains, and the method of successive approximations[J]. Journal of Mathematical Analysis and Applications, 1963, 6(3): 373-376.

    [12] [12] SUTTON R S, BARTO A G. Introduction to reinforcement learning[M]. Cambridge: MIT press, 1998.

    [13] [13] WATKINS C J C H , DAYAN P . Technical Note: Q-Learning[J]. Machine Learning, 1992, 8(3-4): 279-292.

    [14] [14] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. arXiv preprint: 1509.02971, 2015.

    [15] [15] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.

    [17] [17] MOKHTAR A, AZIZOGLU M. Adaptive wavelength routing in all-optical networks[J]. IEEE/ACM Transactions on Networking, 1998, 6(2):197-206.

    Tools

    Get Citation

    Copy Citation Text

    WANG Ya'nan, YANG Xue, ZHUANG Haotao, ZHU Min, KANG Le, ZHAO Yongli. Algorithm of logical topology mapping for resource optimization based on reinforcement learning[J]. Optical Communication Technology, 2020, 44(6): 46

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 10, 2019

    Accepted: --

    Published Online: Aug. 18, 2020

    The Author Email:

    DOI:10.13921/j.cnki.issn1002-5561.2020.06.011

    Topics