Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1000002(2023)

Public Data Acquisition of Optical Coherence Tomography Images of Fundus and Its Analysis Algorithms

Xiupin Wu1、*, Juewei Li1, and Wanrong Gao2
Author Affiliations
  • 1School of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
  • 2School of Electronic and Optical Engineering, Nanjing University of Science & Technology, Nanjing 210014, Jiangsu, China
  • show less
    References(77)

    [1] Kisa A, Kisa S, Collaborators B V I et al. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study[J]. The Lancet Global Health, 9, e130-e143(2021).

    [2] Hassan B, Ahmed R, Li B et al. A comprehensive study capturing vision loss burden in Pakistan (1990—2025): findings from the Global Burden of Disease (GBD) 2017 study[J]. PLoS One, 14, e0216492(2019).

    [3] Steinmetz J D, Bourne R R A, Briant P S et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study[J]. The Lancet Global Health, 9, e144-e160(2021).

    [4] Xu Y F, Wang A H, Lin X L et al. Global burden and gender disparity of vision loss associated with diabetes retinopathy[J]. Acta Ophthalmologica, 99, 431-440(2021).

    [5] Tan G S, Cheung N, Simó R et al. Diabetic macular oedema[J]. The Lancet Diabetes & Endocrinology, 5, 143-155(2017).

    [6] Hafezi F, Richoz O, Torres-Netto E A et al. Corneal cross-linking at the slit lamp[J]. Journal of Refractive Surgery, 37, 78-82(2021).

    [7] An D, Pulford R, Morgan W H et al. Associations between capillary diameter, capillary density, and microaneurysms in diabetic retinopathy: a high-resolution confocal microscopy study[J]. Translational Vision Science & Technology, 10, 6(2021).

    [8] Barnett K, Keeler C R. Fundus photography[J]. Veterinary Record, 80, 624-627(1967).

    [9] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [10] Chen S S, Chen M H, Ma W F. Research on automatic classification of optical coherence tomography retina image based on multi-channel[J]. Chinese Journal of Lasers, 48, 2307001(2021).

    [11] Yuan K, Huo L. Multiple-scale inpainting convolutional neural network for retinal OCT image segmentation[J]. Chinese Journal of Lasers, 48, 1507004(2021).

    [12] Zhao M M, Lu Z Z, Zhu S Y et al. Generation of optical coherence tomography images in ophthalmology based on variational auto-encoder[J]. Acta Optica Sinica, 41, 1417001(2021).

    [13] Swanson E A, Fujimoto J G. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact[J]. Biomedical Optics Express, 8, 1638-1664(2017).

    [15] Song M, Kim Y. Manipulating retinal OCT data for image segmentation based on encoder-decoder network[C](2021).

    [16] Sousa J A, Paiva A, Silva A et al. Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed[J]. PLoS One, 16, e0251591(2021).

    [17] Tian J, Varga B, Somfai G M et al. Real-time automatic segmentation of optical coherence tomography volume data of the macular region[J]. PLoS One, 10, e0133908(2015).

    [18] Hu Z H, Shi Y, Nandanan K et al. Semiautomated segmentation and analysis of retinal layers in three-dimensional spectral-domain optical coherence tomography images of patients with atrophic age-related macular degeneration[J]. Neurophotonics, 4, 011012(2017).

    [19] Hu K, Liu D, Chen Z N et al. Embedded residual recurrent network and graph search for the segmentation of retinal layer boundaries in optical coherence tomography[J]. IEEE Transactions on Instrumentation and Measurement, 70, 5010117(2021).

    [21] Gopinath K, Rangrej S B, Sivaswamy J. A deep learning framework for segmentation of retinal layers from OCT images[C], 888-893(2017).

    [22] Shah A, Abramoff M D, Wu X D. Simultaneous multiple surface segmentation using deep learning[M]. Cardoso M J, Arbel T, Carneiro G, et al. Deep learning in medical image analysis and multimodal learning for clinical decision support. Lecture notes in computer science, 10553, 3-11(2017).

    [23] Shah A, Zhou L X, Abrámoff M D et al. Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images[J]. Biomedical Optics Express, 9, 4509-4526(2018).

    [24] Fang L Y, Cunefare D, Wang C et al. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search[J]. Biomedical Optics Express, 8, 2732-2744(2017).

    [25] Duan J M, Tench C, Gottlob I et al. Automated segmentation of retinal layers from optical coherence tomography images using geodesic distance[J]. Pattern Recognition, 72, 158-175(2017).

    [26] Dodo B I, Li Y M, Eltayef K et al. Graph-cut segmentation of retinal layers from OCT images[C], 35-42(2018).

    [27] Lou S L, Chen X D, Han X Y et al. Fast retinal segmentation based on the wave algorithm[J]. IEEE Access, 8, 53678-53686(2020).

    [28] Chakravarty A, Gaddipati D J, Sivaswamy J. Construction of a retinal atlas for macular OCT volumes[M]. Campilho A, Karray F, Romeny B H. Image analysis and recognition. Lecture notes in computer science, 10882, 650-658(2018).

    [29] Sedai S M, Antony B, Mahapatra D et al. Joint segmentation and uncertainty visualization of retinal layers in optical coherence tomography images using Bayesian deep learning[M]. Stoyanov D, Taylor Z, Ciompi F, et al. Computational pathology and ophthalmic medical image analysis. Lecture notes in computer science, 11039, 219-227(2018).

    [30] Monemian M, Rabbani H. Analysis of a novel segmentation algorithm for optical coherence tomography images based on pixels intensity correlations[J]. IEEE Transactions on Instrumentation and Measurement, 70, 5002012(2021).

    [31] Chakravarty A, Sivaswamy J. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field[J]. Computer Methods and Programs in Biomedicine, 165, 235-250(2018).

    [32] Cazañas-Gordón A, Parra-Mora E, Cruz L A D S. Ensemble learning approach to retinal thickness assessment in optical coherence tomography[J]. IEEE Access, 9, 67349-67363(2021).

    [33] Karri S P K, Chakraborthi D, Chatterjee J. Learning layer-specific edges for segmenting retinal layers with large deformations[J]. Biomedical Optics Express, 7, 2888-2901(2016).

    [35] Gao Z J, Wang X L, Li Y. Automatic segmentation of macular edema in retinal OCT images using improved U-net++[J]. Applied Sciences, 10, 5701(2020).

    [36] Asgari R, Orlando J I, Waldstein S et al. Multiclass segmentation as multitask learning for drusen segmentation in retinal optical coherence tomography[M]. Shen D G, Liu T M, Peter T M, et al. Medical image computing and computer assisted intervention-MICCAI 2019. Lecture notes in computer science, 11764, 192-200(2019).

    [37] Wang J, Li W Y, Chen Y W et al. Weakly supervised anomaly segmentation in retinal OCT images using an adversarial learning approach[J]. Biomedical Optics Express, 12, 4713-4729(2021).

    [38] Hassan B, Hassan T, Ahmed R et al. Automated segmentation and extraction of posterior eye segment using OCT scans[C](2021).

    [39] Hassan B, Qin S Y, Hassan T et al. Joint segmentation and quantification of chorioretinal biomarkers in optical coherence tomography scans: a deep learning approach[J]. IEEE Transactions on Instrumentation and Measurement, 70, 2508817(2021).

    [40] Seeböck P, Waldstein S M, Klimscha S et al. Unsupervised identification of disease marker candidates in retinal OCT imaging data[J]. IEEE Transactions on Medical Imaging, 38, 1037-1047(2019).

    [41] Liu X M, Bai Y J, Cao J et al. Joint disease classification and lesion segmentation via one-stage attention-based convolutional neural network in OCT images[J]. Biomedical Signal Processing and Control, 71, 103087(2022).

    [42] Guo M L, Zhao M, Cheong A M et al. Can deep learning improve the automatic segmentation of deep foveal avascular zone in optical coherence tomography angiography?[J]. Biomedical Signal Processing and Control, 66, 102456(2021).

    [43] Lin L, Wang Z H, Wu J W et al. BSDA-net: a boundary shape and distance aware joint learning framework for segmenting and classifying OCTA images[M]. de Bruijne M, Cattin P C, Cotin S, et al. Medical image computing and computer assisted intervention-MICCAI 2021. Lecture notes in computer science, 12908, 65-75(2021).

    [44] Kurmann T, Yu S Q, Márquez-Neila P et al. Expert-level automated biomarker identification in optical coherence tomography scans[J]. Scientific Reports, 9, 13605(2019).

    [45] Das V, Prabhakararao E, Dandapat S et al. B-scan attentive CNN for the classification of retinal optical coherence tomography volumes[J]. IEEE Signal Processing Letters, 27, 1025-1029(2020).

    [46] Rajagopalan N, Narasimhan V, Vinjimoor S K et al. RETRACTED ARTICLE: deep CNN framework for retinal disease diagnosis using optical coherence tomography images[J]. Journal of Ambient Intelligence and Humanized Computing, 12, 7569-7580(2021).

    [47] Karri S P K, Chakraborty D, Chatterjee J. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration[J]. Biomedical Optics Express, 8, 579-592(2017).

    [48] Thomas A, Harikrishnan P M, Ramachandran R et al. A novel multiscale and multipath convolutional neural network based age-related macular degeneration detection using OCT images[J]. Computer Methods and Programs in Biomedicine, 209, 106294(2021).

    [49] Fang L Y, Wang C, Li S T et al. Attention to lesion: lesion-aware convolutional neural network for retinal optical coherence tomography image classification[J]. IEEE Transactions on Medical Imaging, 38, 1959-1970(2019).

    [50] Apon T S, Hasan M M, Islam A et al. Demystifying deep learning models for retinal OCT disease classification using explainable AI[C](2021).

    [51] Tayal A, Gupta J, Solanki A et al. DL-CNN-based approach with image processing techniques for diagnosis of retinal diseases[J]. Multimedia Systems, 28, 1417-1438(2022).

    [52] Rastogi D, Padhy R P, Sa P K. Detection of retinal disorders in optical coherence tomography using deep learning[C](2019).

    [53] Barua P D, Chan W Y, Dogan S et al. Multilevel deep feature generation framework for automated detection of retinal abnormalities using OCT images[J]. Entropy, 23, 1651(2021).

    [54] Sharif M M, Akram M U, Malik A W. Extraction and analysis of RPE layer from OCT images for detection of age related macular degeneration[C](2018).

    [55] Khalid S, Akram M U, Hassan T et al. Fully automated robust system to detect retinal edema, central serous chorioretinopathy, and age related macular degeneration from optical coherence tomography images[J]. BioMed Research International, 2017, 7148245(2017).

    [56] Yoo T K, Choi J Y, Kim H K. Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot classification[J]. Medical & Biological Engineering & Computing, 59, 401-415(2021).

    [57] He X X, Fang L Y, Rabbani H et al. Retinal optical coherence tomography image classification with label smoothing generative adversarial network[J]. Neurocomputing, 405, 37-47(2020).

    [58] Kim J, Tran L. Retinal disease classification from OCT images using deep learning algorithms[C](2021).

    [59] Paul D, Tewari A, Ghosh S et al. OCTx: ensembled deep learning model to detect retinal disorders[C], 526-531(2020).

    [60] Srivastava R, Ong E P, Lee B H. Role of the choroid in automated age-related macular degeneration detection from optical coherence tomography images[C], 1867-1870(2020).

    [61] Farsiu S, Chiu S J, O'Connell R V et al. Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography[J]. Ophthalmology, 121, 162-172(2014).

    [62] Wang Y, Zhang Y N, Yao Z M et al. Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images[J]. Biomedical Optics Express, 7, 4928-4940(2016).

    [63] Rasti R, Mehridehnavi A, Rabbani H et al. Convolutional mixture of experts model: a comparative study on automatic macular diagnosis in retinal optical coherence tomography imaging[J]. Journal of Medical Signals and Sensors, 9, 1-14(2019).

    [64] Rasti R, Rabbani H, Mehridehnavi A et al. Macular OCT classification using a multi-scale convolutional neural network ensemble[J]. IEEE Transactions on Medical Imaging, 37, 1024-1034(2018).

    [66] Jiang Z, Wang L, Wu Q et al. Computer-aided diagnosis of retinopathy based on vision transformer[J]. Journal of Innovative Optical Health Sciences, 15, 71-79(2022).

    [67] Thomas A P M H, Krishna A K et al. A novel multiscale convolutional neural network based age-related macular degeneration detection using OCT images[J]. Biomedical Signal Processing and Control, 67, 102538(2021).

    [68] Huang Y, Zhang N, Hao Q. Real-time noise reduction based on ground truth free deep learning for optical coherence tomography[J]. Biomedical Optics Express, 12, 2027-2040(2021).

    [69] Huang Y Q, Lu Z X, Shao Z M et al. Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network[J]. Optics Express, 27, 12289-12307(2019).

    [70] Huang Y Q, Xia W J, Lu Z X et al. Noise-powered disentangled representation for unsupervised speckle reduction of optical coherence tomography images[J]. IEEE Transactions on Medical Imaging, 40, 2600-2614(2021).

    [71] Ma Y H, Chen X J, Zhu W F et al. Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN[J]. Biomedical Optics Express, 9, 5129-5146(2018).

    [72] Abbasi A, Monadjemi A, Fang L Y et al. Optical coherence tomography retinal image reconstruction via nonlocal weighted sparse representation[J]. Journal of biomedical optics, 23, 036011(2018).

    [73] Rakocz N, Chiang J N, Nittala M G et al. Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging[J]. Npj Digital Medicine, 4, 44(2021).

    [74] Asif S, Amjad K. Deep residual network for diagnosis of retinal diseases using optical coherence tomography images[J]. Interdisciplinary Sciences: Computational Life Sciences, 1-11(2022).

    [75] Kermany D S, Goldbaum M, Cai W J et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 172, 1122-1131(2018).

    [77] Yan Y, Jin K, Gao Z Y et al. Attention-based deep learning system for automated diagnoses of age-related macular degeneration in optical coherence tomography images[J]. Medical Physics, 48, 4926-4934(2021).

    [78] Singh A, Balaji J J, Rasheed M A et al. Evaluation of explainable deep learning methods for ophthalmic diagnosis[J]. Clinical Ophthalmology (Auckland, N.Z.), 15, 2573-2581(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xiupin Wu, Juewei Li, Wanrong Gao. Public Data Acquisition of Optical Coherence Tomography Images of Fundus and Its Analysis Algorithms[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1000002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Feb. 22, 2022

    Accepted: Apr. 6, 2022

    Published Online: May. 10, 2023

    The Author Email: Wu Xiupin (wuxp_19@sumhs.edu.cn)

    DOI:10.3788/LOP220794

    Topics