Journal of the Chinese Ceramic Society, Volume. 51, Issue 11, 2763(2023)
Influence of NaAlO2 on Hydration and Property of Mussel Shell-Based Carbonaluminate Cementitious Materials
[1] [1] WU Z Y, YU H F, MA H Y, et al. Physical and mechanical properties of coral aggregates in the South China Sea[J]. J Build Eng, 2023, 63: 105478.
[2] [2] WANG Y R, CHENG Y H, YIN C C, et al. Seashell-inspired switchable waterborne coatings with complete biodegradability, intrinsic flame-retardance, and high transparency[J]. ACS Nano, 2023, 17(13): 12433-12444.
[4] [4] YAO Z T, XIA M S, LI H Y, et al. Bivalve shell: not an abundant useless waste but a functional and versatile biomaterial[J]. Crit Rev Environ Sci Technol, 2014, 44(22): 2502-2530.
[5] [5] NAIK A S, HAYES M. Bioprocessing of mussel by-products for value added ingredients[J]. Trends Food Sci Technol, 2019, 92: 111-121.
[6] [6] CUADRADO-RICA H, SEBAIBI N, BOUTOUIL M, et al. Properties of ordinary concretes incorporating crushed queen scallop shells[J]. Mater Struct, 2016, 49(5): 1805-1816.
[7] [7] EZIEFULA U G, EZEH J C, EZIEFULA B I. Properties of seashell aggregate concrete: A review[J]. Constr Build Mater, 2018, 192: 287-300.
[9] [9] CHEN B C, PENG L G, ZHONG H, et al. Synergetic recycling of recycled concrete aggregate and waste mussel shell in concrete: mechanical properties, durability and microstructure[J]. Constr Build Mater, 2023, 371: 130825.
[10] [10] MARTNEZ-GARCA C, GONZLEZ-FONTEBOA B, MARTNEZ-ABELLA F, et al. Performance of mussel shell as aggregate in plain concrete[J]. Constr Build Mater, 2017, 139: 570-583.
[11] [11] BAMIGBOYE G O, NWORGU A T, ODETOYAN A O, et al. Sustainable use of seashells as binder in concrete production: prospect and challenges[J]. J Build Eng, 2021, 34: 101864.
[12] [12] WANG J J, LIU E G. Upcycling waste seashells with cement: Rheology and early-age properties of Portland cement paste[J]. Resour Conserv Recycl, 2020, 155: 104680.
[13] [13] LERTWATTANARUK P, MAKUL N, SIRIPATTARAPRAVAT C. Utilization of ground waste seashells in cement mortars for masonry and plastering[J]. J Environ Manage, 2012, 111: 133-141.
[14] [14] NAQI A L, SIDDIQUE S, KIM H K, et al. Examining the potential of calcined oyster shell waste as additive in high volume slag cement[J]. Constr Build Mater, 2020, 230: 116973.
[15] [15] WANG D H, SHI C J, FARZADNIA N, et al. A review on use of limestone powder in cement-based materials: mechanism, hydration and microstructures[J]. Constr Build Mater, 2018, 181: 659-672.
[16] [16] TAYEH B A, HASANIYAH M W, ZEYAD A M, et al. Properties of concrete containing recycled seashells as cement partial replacement: a review[J]. J Clean Prod, 2019, 237: 117723.
[18] [18] PUERTA-FALLA G, BALONIS M, LE SAOUT G, et al. Elucidating the role of the aluminous source on limestone reactivity in cementitious materials[J]. J Am Ceram Soc, 2015, 98(12): 4076-4089.
[19] [19] GOERGENS J, GOETZ-NEUNHOEFFER F. Temperature-dependent late hydration of calcium aluminate cement in a mix with calcite - Potential of G-factor quantification combined with GEMS-predicted phase content[J]. Cement, 2021(5): 100011.
[20] [20] BAQUERIZO L G, MATSCHEI T, SCRIVENER K L, et al. Hydration states of AFm cement phases[J]. Cem Concr Res, 2015, 73: 143-157.
[23] [23] MANNINGER T, JANSEN D, NEUBAUER J, et al. Accelerating effect of Li2CO3 on formation of monocarbonate and Al-hydroxide in a CA-cement and calcite mix during early hydration[J]. Cem Concr Res, 2019, 126: 105897.
[24] [24] LIU Y T, ZHANG Y Y, DONG B Q, et al. Limestone Powder activated by sodium aluminate: Hydration and microstructure[J]. Constr Build Mater, 2023, 368: 130446.
[25] [25] LIU Y T, DONG B Q, HONG S X, et al. Influence mechanisms of CaCO3/NaAlO2 ratios in carbonaluminate cementitious materials[J]. J Mater Res Technol, 2023, 25: 4700-4719.
[27] [27] SCRIVENER K, SNELLINGS R, LOTHENBACH B. A practical guide to microstructural analysis of cementitious materials[M].
[28] [28] HUANG H, LI X R, AVET F, et al. Strength-promoting mechanism of alkanolamines on limestone-calcined clay cement and the role of sulfate[J]. Cem Concr Res, 2021, 147: 106527.
[29] [29] WEI G Q, DONG B Q, FANG G H, et al. Understanding reactive amorphous phases of fly ash through the acidolysis[J]. Cem Concr Compos, 2023, 140: 105102.
[30] [30] LIU T, YU Q L, BROUWERS H J H. In-situ formation of layered double hydroxides (LDHs) in sodium aluminate activated slag: the role of Al-O tetrahedra[J]. Cem Concr Res, 2022, 153: 106697.
[31] [31] HAN J G, WANG K J, SHI J Y, et al. Influence of sodium aluminate on cement hydration and concrete properties[J]. Constr Build Mater, 2014, 64: 342-349.
[32] [32] KATAYAMA T. The so-called alkali-carbonate reaction (ACR)-its mineralogical and geochemical details, with special reference to ASR[J]. Cem Concr Res, 2010, 40(4): 643-675.
[33] [33] PUERTA-FALLA G, BALONIS M, SAOUT G, et al. The influence of slightly and highly soluble carbonate salts on phase relations in hydrated calcium aluminate cements[J]. J Mater Sci, 2016, 51(12): 6062-6074.
[34] [34] BIZZOZERO J, SCRIVENER K L. Limestone reaction in calcium aluminate cement-calcium sulfate systems[J]. Cem Concr Res, 2015, 76: 159-169.
[35] [35] GOERGENS J, BELLI R, SCHULBERT C, et al. Influence of different CA2/CA-ratios on hydration degree, AH3 content and flexural strength investigated for a binder formulation of calcium aluminate cement with calcite[J]. Cem Concr Res, 2023, 165: 107090.
[36] [36] DING W W, HE Y J, LU L N, et al. Comparative study of hydration of monocalcium aluminate and quaternary phase and the amorphous AH3 phase in their hydrates[J]. J Therm Anal Calorim, 2020, 141(2): 707-716.
[37] [37] CUESTA A, ICHIKAWA R U, LONDONO-ZULUAGA D, et al. Aluminum hydroxide gel characterization within a calcium aluminate cement paste by combined Pair Distribution Function and Rietveld analyses[J]. Cem Concr Res, 2017, 96: 1-12.
[38] [38] ZHANG Y Y, ZHAO Q X, GAO Z M, et al. Nanostructural evolution of Al(OH)3 gel formed by the cubic and orthorhombic ye'elimite clinkers of calcium sulfoaluminate cements in an ultra-wide hydration temperature range[J]. Cem Concr Res, 2021, 150: 106607.
[39] [39] MENG X S, ZHOU L C, LIU L, et al. Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata[J]. Science, 2023, 380(6651): 1252-1257.
[40] [40] WALKLEY B, PROVIS J L. Solid-state nuclear magnetic resonance spectroscopy of cements[J]. Mater Today Adv, 2019(1): 100007.
[41] [41] CHEN P, MA B G, TAN H B, et al. Effects of amorphous aluminum hydroxide on chloride immobilization in cement-based materials[J]. Constr Build Mater, 2020, 231: 117171.
[42] [42] DU H C, STEINACHER M, BORCA C, et al. Amorphous CaCO3: influence of the formation time on its degree of hydration and stability[J]. J Am Chem Soc, 2018, 140(43): 14289-14299.
[43] [43] MING X, LI Y J, LIU Q, et al. Chloride binding behaviors and early age hydration of tricalcium aluminate in chloride-containing solutions[J]. Cem Concr Compos, 2023, 137: 104928.
[44] [44] ZHANG Y Y, ZHAO Q X, GAO Z M, et al. Microstructure control of AH3 gel formed in various calcium sulfoaluminate cements as a function of pH[J]. ACS Sustainable Chem Eng, 2021, 9(34): 11534-11547.
[45] [45] ZHOU J, ZHENG K R, LIU Z Q, et al. Chemical effect of nano-alumina on early-age hydration of Portland cement[J]. Cem Concr Res, 2019, 116: 159-167.
[46] [46] THOMAS MATSCHEI. Thermodynamics of Cement Hydration[D]. Aberdeen University, 2007.
[47] [47] PADILLA-ENCINAS P, FERNNDEZ-CARRASCO L, PALOMO A, et al. Effect of alkalinity on early-age hydration in calcium sulfoaluminate clinker[J]. Cem Concr Res, 2022, 155: 106781.
[48] [48] ROTHSTEIN D, THOMAS J J, CHRISTENSEN B J, et al. Solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pore solutions as a function of hydration time[J]. Cem Concr Res, 2002, 32(10): 1663-1671.
[49] [49] LOTHENBACH B, PELLETIER-CHAIGNAT L, WINNEFELD F. Stability in the system CaO-Al2O3-H2O[J]. Cem Concr Res, 2012, 42(12): 1621-1634.
[50] [50] MATSCHEI T, GLASSER F P. Temperature dependence, 0 to 40 ℃, of the mineralogy of Portland cement paste in the presence of calcium carbonate[J]. Cem Concr Res, 2010, 40(5): 763-777.
[52] [52] SUN W, CHEN H S, LUO X, et al. The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete[J]. Cem Concr Res, 2001, 31(4): 595-601.
[53] [53] JEONG U, SHIN H H, KIM Y. Functionalized magnetic core-shell Fe@SiO2 nanoparticles as recoverable colorimetric sensor for Co2+ ion[J]. Chem Eng J, 2015, 281: 428-433.
Get Citation
Copy Citation Text
LIU Yuantao, DONG Biqin, XING Feng, WANG Yanshuai. Influence of NaAlO2 on Hydration and Property of Mussel Shell-Based Carbonaluminate Cementitious Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 2763
Received: Jul. 27, 2023
Accepted: --
Published Online: Jan. 18, 2024
The Author Email:
CSTR:32186.14.