Journal of Atmospheric and Environmental Optics, Volume. 4, Issue 3, 171(2009)
Numerical Simulation of Phase Screen Distorted by Atmospheric Turbulence Based on Fractal Theory
[1] [1] Noll R J. Zernike polynomials and atmospheric turbulence [J]. J. Opt. Soc. Am., 1976, 66: 207-211.
[2] [2] Roddier N. Atmospheric wave-front simulation using Zernike polynomial [J]. Opt. Eng., 1990, 29(10): 1174-1180.
[4] [4] McGlamery B L. Restoration of turbulence-degraded images [J]. J. Opt. Soc. Am., 1996, 57(3): 293-297.
[6] [6] Stribling B E. Laser beam propagation in non-Kolmogorov atmospheric turbulence [D]. Ohio: Master Thesis of Air Force Institute of Technology, Wright-Patterson Air Force Base, 1994.
[7] [7] Pérez D G, Zunino L. Generalized wavefront phase for non-Kolmogorov turbulence [J]. Optics Letters, 2008, 33(6): 572-574.
[8] [8] Wang D S, Cao L. Chaos, Fractal and the Applications [M]. Hefei: USTC Press, 1995: 245-260.
[9] [9] Schwartz C, Baum G, Ribak E N. Turbulence-degraded wave fronts as fractal surfaces [J]. J. Opt. Soc. Am. A, 1994, 11(1): 444-451.
[10] [10] McGaughey D R, Aithen G J M. Statistical analysis of successive random additions for generating fractional Brownian motion [J]. Physica A, 2000, 277(1): 25-34.
[11] [11] Hua Z L, Li H P, Gu Y J. Atmosphere turbulence phase compensation in synthetic aperture ladar data processing [C]. Proc. SPIE, 6787(24): 1-7.
[12] [12] Lane R, Glindemann A, Dainty J. Simulation of a Kolmogorov phase screen [J]. Waves in Random Media, 1992, 2(3): 209-224.
Get Citation
Copy Citation Text
LI Hong-ping, YAN Chuan-zhong, HUA Zhi-li. Numerical Simulation of Phase Screen Distorted by Atmospheric Turbulence Based on Fractal Theory[J]. Journal of Atmospheric and Environmental Optics, 2009, 4(3): 171
Received: Mar. 2, 2009
Accepted: --
Published Online: May. 26, 2010
The Author Email: Hong-ping LI (lihp2005@yeah.net)
CSTR:32186.14.