Electro-Optic Technology Application, Volume. 28, Issue 6, 45(2022)

Pulse Burst Picosecond Laser Technique and Application in Space Debris Ranging

LONG Mingliang1... DENG Huarong1, ZHANG Haifeng1,2, WU Zhibo1,2, ZHANG Zhongping1,2,3 and CHEN Meng4 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(26)

    [1] [1] MICHAEL A S, GEORG K, FRANZ K, et al. Daylight space debris laser ranging[J]. Nature Communications, 2020, 11: 3735.

    [2] [2] CRAIG H S, BEN G. The EOS space debris tracking system[C]//The Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, Maui, Hawaii, 2006.

    [3] [3] SUN Hao, ZHANG Haifeng, ZHANG Zhongping, et al. Experiment on diffuse reflection laser ranging to space debris and data analysis[J]. Research in Astronomy and Astrophysics, 2015, 15(6): 909-917.

    [4] [4] ZHANG Z P, YANG F M, ZHANG H F, et al. The use of laser ranging to measure space debris[J]. Research in Astron Astrophys, 2012, 12(2): 212-218.

    [5] [5] KIRCHNER G, KOIDL F, FRIEDERICH F, et al. Laser measurements to space debris from Graz SLR station[J]. Advances in Space Research, 2013, 51: 21-24.

    [6] [6] BAI Z, CHEN H, GAO X, et al. Highly compact nanosecond laser for space debris tracking[J]. Opt Mater, 2019, 98, 109470.

    [10] [10] ZHAO Sisi, STEINDORFER M, KIRCHNER G, et al. Attitude analysis of space debris using SLR and light curve data measured with single-photon detector[J]. Advances in Space Research, 2020, 65(5): 1518-1527.

    [11] [11] ZHANG Z P, ZHANG H F, LONG M L, et al. High precision space debris laser ranging with 4.2 W double-pulse picosecond laser at 1 kHz in 532 nm[J]. Optik, 2019, 179: 691-699.

    [13] [13] CRAIG W S, JENNIFER L W, SIDERS, et al. Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer[J]. Applied Optics, 1998, 37(22): 5302-5305.

    [14] [14] ACHIM N, THOMAS H, BERNHARD H, et al. Generation of tailored picosecond-pulse-trains for micro-machining[C]//Commercial and Biomedical Applications of Ultrafast Lasers VI, Proc of SPIE, 2006, 610812: 1-7.

    [15] [15] BRIAN T, JAMES H, WALTER L, et al. A technique for real-time visualization of flow structure in high-speed flows[J]. Physics of Fluids, 2002, 14(10): 3349-3353.

    [16] [16] BAI Zhenao, BAI Zhenxu, YANG Chao, et al. High pulse energy high repetition picosecond chirped-multi-pulse regenerative amplifier laser[J]. Optics&Laser Technology, 2013, 46: 25-29.

    [17] [17] JOSHUA T M. Inverse free electron laser interactions with sub-picosecond high brightness electron beams[D]. California: University of California, 2014.

    [18] [18] GAIL A M, MICHAEL D J, JOEL J. Generation of pulse bursts at 212.8 nm by intracavity modulation of an Nd:YAG laser[J]. IEEE Journal of Quantum Electron, 1978, 14(7): 527-533.

    [19] [19] YANKOV P, ANGELOV I. High-energy long-pulse Nd:YAG picosecond laser[J]. Optical and Quantum Electronics, 1992, 24: 1173-1179.

    [20] [20] PING F P W, RICHARD B M. High-energy pulse-burst laser system for megahertz-rate flow visualization[J]. Optics Letters, 2000, 25(22): 1639-1642.

    [22] [22] ANTONIO A, CATERINA B, LUCA C, et al. Laser system generating 250 mJ bunches of 5 GHz repetition rate, 12 ps pulses[J]. Optics Express, 2008, 16(20): 15811-15815.

    [23] [23] HARTOG D J D, AMBUEL J R. Pulse-burst operation of standard Nd:YAG lasers[C]//14th International Symposium on Laser-Aided Plasma Diagnostics, Journal of Physics: Conference Series, 2010, 012023227: 1-5.

    [24] [24] YAN L, DUA Q Y, HUA J, et al. UV pulse shaping for the photocathode RF gun[J]. Nuclear Instruments and Methods in Physics Research A, 2011, 637: S127-S129.

    [25] [25] AGNESI A, CARRA L, DALLOCCHIO P, et al. 50-mJ macro-pulses at 1 064 nm from a diode-pumped picoseconds laser system[J]. Optics Express, 2011, 19(21): 20316-20321.

    [26] [26] RALF K. Applications of picoseconds lasers and pulse- bursts in precision manufacturing[C]//Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII, Proc of SPIE, 2012, 8243(82430I): 1-7.

    [27] [27] Jorg Korner, JOACHIM H, HARTMUT L, et al. Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb3+:CaF2[J]. Optics Express, 2013, 21(23): 29006-29013.

    [28] [28] Jorg Korner, Jürgen Reiter. All diode pumped laser system creating 7.5 kW average power broadband pulse bursts[C]//Research in Optical Sciences, 2014.

    [29] [29] SAEID R, LI Jianzhao, PETER R H. Burst train generator of high energy femtosecond laser pulses for driving heat accumulation effect during micromachining[J]. Optics Letters, 2015, 40(9): 2064-2067.

    [30] [30] LONG Mingliang, CHEN Liyuan, CHEN Meng, et al. High-power LD side-pump Nd:YAG regenerative amplifier at 1 kHz repetition rate with volume Bragg gratings (VBG) for broadening and compressor[J]. Appl Phys B, 2016, 122(142): 1-5.

    [31] [31] LONG Mingliang, CHEN Meng, LI Gang.1 kHz, 96 W pulse-burst picosecond laser system with six equal spacing and amplitude pulses[J]. Appl Opt, 2017, 56(15): 4274-4277.

    Tools

    Get Citation

    Copy Citation Text

    LONG Mingliang, DENG Huarong, ZHANG Haifeng, WU Zhibo, ZHANG Zhongping, CHEN Meng. Pulse Burst Picosecond Laser Technique and Application in Space Debris Ranging[J]. Electro-Optic Technology Application, 2022, 28(6): 45

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 11, 2021

    Accepted: --

    Published Online: Mar. 13, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics