Optics and Precision Engineering, Volume. 28, Issue 2, 443(2020)
Feature extraction of hyperspectral image with semi-supervised multi-graph embedding
[3] [3] CHEN M L, WANG Q, LI X L. Discriminant analysis with graph learning for hyperspectral image classification [J]. Remote Sensing, 2018, 10(6): 836.
[4] [4] HE L, LI J, LIU C, et al.. Recent advances on spectral-spatial hyperspectral image classification: an overview and new guidelines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(3): 1579-1597.
[7] [7] MENEZES J, POOJARY N. Dimensionality reduction and classification of hyperspectral images using DWT and DCCF[C]. Mec International Conference on Big Data and Smart City. IEEE, 2016: 47-52.
[8] [8] KANG X, XIANG X, LI S, et al.. PCA-based edge-preserving features for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7140-7151.
[9] [9] WEN J, FANG X, CUI J, et al.. Robust sparse linear discriminant analysis[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2018, 29(2): 390-403.
[10] [10] XU J C, MU H Y, WANG Y, et al.. Feature genes selection using supervised locally linear embedding and correlation coefficient for microarray classification [J]. Computational and Mathematical Methods in Medicine, 2018, 2018: 1-11.
[11] [11] XU X, YANG H, LIAN C, et al.. Self-learning control using dual heuristic programming with global Laplacian Eigenmaps[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9517-9526.
[12] [12] SUN W, YANG G, DU B, et al.. A sparse and low-rank near-isometric linear embedding method for feature extraction in hyperspectral imagery classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 4032-4046.
[13] [13] YONG Y H, XIAO Q Z. Multi-phase batch process monitoring based on multiway weighted global neighborhood preserving embedding method[J]. Journal of Process Control, 2018, 69: 44-57.
[14] [14] YU Q, WANG R, LI B N, et al.. Robust locality preserving projections with cosine-based dissimilarity for linear dimensionality reduction [J]. IEEE Access, 2017, 5(99): 2676-2684.
[15] [15] ZHONG J, PANG Y W, YUAN Y, et al.. Relevance and irrelevance graph based marginal Fisher analysis for image search reranking[J]. Signal Processing, 2016, 121: 139-152.
[16] [16] VAN M, KANG H J. Bearing defect classification based on individual wavelet local Fisher discriminant analysis with particle swarm optimization [J]. IEEE Transactions on Industrial Informatics, 2017, 12(1): 124-135.
[17] [17] LUO F L, HUANG H, DUAN Y, et al.. Local geometric structure feature for dimensionality reduction of hyperspectral imagery[J]. Remote Sensing, 2017, 9(8): 790.
[18] [18] DHAMECHA T I, SINGH R, VATASA M. On incremental semi-supervised discriminant analysis[J]. Pattern Recognition, 2016, 52: 135-147.
[19] [19] GAO S, ZHOU J, YAN Y, et al.. Recursively global and local discriminant analysis for semi-supervised and unsupervised dimension reduction with image analysis[J]. Neurocomputing, 2016, 216: 672-683.
[20] [20] Luo F L, HUANG H, MA Z, et al.. Semisupervised sparse manifold discriminative analysis for feature extraction of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6197-6211.
[21] [21] YUAN H L, TANG Y Y. Learning with hypergraph for hyperspectral image feature extraction[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(8): 1695-1699.
[22] [22] HUANG S, YANG D, GE Y X, et al.. Discriminant hyper-Laplacian projections and its scalable extension for dimensionality reduction[J]. Neurocomputing, 2016, 173(2): 145-153.
[23] [23] SUN Y, WANG S, LIU Q, et al.. Hypergraph embedding for spatial-spectral joint feature extraction in hyperspectral images[J]. Remote Sensing, 2017, 9(5): 506-.520
[24] [24] WANG S, SUN Y, HANG R, et al.. Spatial-spectral locality constrained elastic net hypergraph for hyperspectral image clustering[J]. International Journal of Remote Sensing, 2017, 38(23): 7374-7388.
[25] [25] YAN S, XU D, ZHANG B, et al.. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
Get Citation
Copy Citation Text
HUANG Hong, TANG Yu-xiao, DUAN Yu-le. Feature extraction of hyperspectral image with semi-supervised multi-graph embedding[J]. Optics and Precision Engineering, 2020, 28(2): 443
Category:
Received: May. 7, 2019
Accepted: --
Published Online: May. 27, 2020
The Author Email: