Optics and Precision Engineering, Volume. 28, Issue 2, 443(2020)

Feature extraction of hyperspectral image with semi-supervised multi-graph embedding

HUANG Hong... TANG Yu-xiao and DUAN Yu-le |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(25)

    [3] [3] CHEN M L, WANG Q, LI X L. Discriminant analysis with graph learning for hyperspectral image classification [J]. Remote Sensing, 2018, 10(6): 836.

    [4] [4] HE L, LI J, LIU C, et al.. Recent advances on spectral-spatial hyperspectral image classification: an overview and new guidelines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(3): 1579-1597.

    [7] [7] MENEZES J, POOJARY N. Dimensionality reduction and classification of hyperspectral images using DWT and DCCF[C]. Mec International Conference on Big Data and Smart City. IEEE, 2016: 47-52.

    [8] [8] KANG X, XIANG X, LI S, et al.. PCA-based edge-preserving features for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7140-7151.

    [9] [9] WEN J, FANG X, CUI J, et al.. Robust sparse linear discriminant analysis[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2018, 29(2): 390-403.

    [10] [10] XU J C, MU H Y, WANG Y, et al.. Feature genes selection using supervised locally linear embedding and correlation coefficient for microarray classification [J]. Computational and Mathematical Methods in Medicine, 2018, 2018: 1-11.

    [11] [11] XU X, YANG H, LIAN C, et al.. Self-learning control using dual heuristic programming with global Laplacian Eigenmaps[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9517-9526.

    [12] [12] SUN W, YANG G, DU B, et al.. A sparse and low-rank near-isometric linear embedding method for feature extraction in hyperspectral imagery classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 4032-4046.

    [13] [13] YONG Y H, XIAO Q Z. Multi-phase batch process monitoring based on multiway weighted global neighborhood preserving embedding method[J]. Journal of Process Control, 2018, 69: 44-57.

    [14] [14] YU Q, WANG R, LI B N, et al.. Robust locality preserving projections with cosine-based dissimilarity for linear dimensionality reduction [J]. IEEE Access, 2017, 5(99): 2676-2684.

    [15] [15] ZHONG J, PANG Y W, YUAN Y, et al.. Relevance and irrelevance graph based marginal Fisher analysis for image search reranking[J]. Signal Processing, 2016, 121: 139-152.

    [16] [16] VAN M, KANG H J. Bearing defect classification based on individual wavelet local Fisher discriminant analysis with particle swarm optimization [J]. IEEE Transactions on Industrial Informatics, 2017, 12(1): 124-135.

    [17] [17] LUO F L, HUANG H, DUAN Y, et al.. Local geometric structure feature for dimensionality reduction of hyperspectral imagery[J]. Remote Sensing, 2017, 9(8): 790.

    [18] [18] DHAMECHA T I, SINGH R, VATASA M. On incremental semi-supervised discriminant analysis[J]. Pattern Recognition, 2016, 52: 135-147.

    [19] [19] GAO S, ZHOU J, YAN Y, et al.. Recursively global and local discriminant analysis for semi-supervised and unsupervised dimension reduction with image analysis[J]. Neurocomputing, 2016, 216: 672-683.

    [20] [20] Luo F L, HUANG H, MA Z, et al.. Semisupervised sparse manifold discriminative analysis for feature extraction of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6197-6211.

    [21] [21] YUAN H L, TANG Y Y. Learning with hypergraph for hyperspectral image feature extraction[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(8): 1695-1699.

    [22] [22] HUANG S, YANG D, GE Y X, et al.. Discriminant hyper-Laplacian projections and its scalable extension for dimensionality reduction[J]. Neurocomputing, 2016, 173(2): 145-153.

    [23] [23] SUN Y, WANG S, LIU Q, et al.. Hypergraph embedding for spatial-spectral joint feature extraction in hyperspectral images[J]. Remote Sensing, 2017, 9(5): 506-.520

    [24] [24] WANG S, SUN Y, HANG R, et al.. Spatial-spectral locality constrained elastic net hypergraph for hyperspectral image clustering[J]. International Journal of Remote Sensing, 2017, 38(23): 7374-7388.

    [25] [25] YAN S, XU D, ZHANG B, et al.. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.

    CLP Journals

    [1] YING Xiao-qing, LIU hao, YUAN Wen-ye, YANG Zheng-cheng. S u b set -d ivided iterative p rojection b aggin g for n oisy -label recovery[J]. Optics and Precision Engineering, 2020, 28(12): 2719

    Tools

    Get Citation

    Copy Citation Text

    HUANG Hong, TANG Yu-xiao, DUAN Yu-le. Feature extraction of hyperspectral image with semi-supervised multi-graph embedding[J]. Optics and Precision Engineering, 2020, 28(2): 443

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 7, 2019

    Accepted: --

    Published Online: May. 27, 2020

    The Author Email:

    DOI:10.3788/ope.20202802.0443

    Topics