Infrared and Laser Engineering, Volume. 52, Issue 2, 20220376(2023)
Airborne MS-LiDAR data classification by combining NDRI features and spatial correlation
[1] L Macarringue, É Bolfe, P Pereira. Developments in land use and land cover classification techniques in remote sensing: A review. Journal of Geographic Information System, 14, 1-28(2022).
[2] M Digra, R Dhir, N Sharma. Land use land cover classification of remote sensing images based on the deep learning approaches: A statistical analysis and review. Arabian Journal of Geosciences, 15, 1003(2022).
[3] R E Van. The first multispectral airborne lidar sensor. GeoInformatics, 18, 10(2015).
[4] V Wichmann, M Bremer, J Lindenberger, et al. Evaluating the potential of multispectral airborne lidar for topographic mapping and land cover classification. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 113-115(2015).
[5] Jixian Zhang, Xiangguo Lin, Xinlian Liang. Advances and prospects of information extraction from point clouds. Acta Geodaetica et Cartographica Sinica, 46, 1460-1469(2017).
[6] Suoyan Pan, Haiyan Guan. Object classification using airborne multispectral LiDAR data. Acta Geodaetica et Cartographica Sinica, 47, 198-207(2018).
[7] L Z Huo, C A Silva, C Klauberg, et al. Supervised spatial classification of multispectral LiDAR data in urban areas. Plos One, 13, e0206185(2018).
[8] T A Teo, H M Wu. Analysis of land cover classification using multi-wavelength LiDAR system. Applied Sciences, 7, 1-20(2017).
[9] Q W Wang, Y F Gu. A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 58, 1568-1586(2019).
[10] Shuang Cao, Suoyan Pan, Haiyan Guan. Classification of airborne multispectral LiDAR for random forest features. Bulletin of Surveying and Mapping, 79-84(2019).
[11] L Matkainen, J Hyypa, P Litkey. Multispectral airborne laser scanning for automated map updating. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 323-330(2016).
[12] L Matkainen, K Karila, J Hyyppa, et al. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 298-313(2017).
[13] B Chen, S Shi, W Gong, et al. Multispectral LiDAR point cloud classification: A two-step approach. Remote Sensing, 9, 1-17(2017).
[14] S Pan, H Guan, Y Yu, et al. A comparative land-cover classification feature study of learning algorithms: DBM, PCA, and RF using multispectral LiDAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 1314-1326(2019).
[15] S Pan, H Guan, Y Yu, et al. Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 241-254(2020).
[16] J Fernandez-diaz, W Carter, C Glennie, et al. Capability assessment and performance metrics for the Titan multispectral mapping LiDAR. Remote Sensing, 8, 936(2016).
[17] S Morsy, A Shaker, A El-rabbany. Multispectral LiDAR data for land cover classification of urban areas. Sensors, 17, 958(2017).
[18] A Shakera, W Y Yan, P E Larocqueb. Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 94-108(2019).
[19] E Ahokas, J Hyyppä, X Yu. Towards automatic single-sensor mapping by multispectral airborne laser scanning. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3, 155-162(2016).
[20] X L Zou, G H Zhao, J Li, et al. 3D land cover classification based on multispectral lidar point clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1, 741-747(2016).
[21] D Li, X Shen, H Guan, et al. AGFP-Net: Attentive geometric feature pyramid network for land cover classification using airborne multispectral LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 108, 102723(2022).
[22] Leiguang Wang, Ruozheng Geng, Qinling Dai, et al. Conditional random field classification method based on hyperspectral-LiDAR fusion. Infrared and Laser Engineering, 50, 20210112(2021).
[23] Meiling Sun, Yongshu Li, Qiang Chen, et al. Iterative multi-scale filter based on morphological opening by reconstruction for LiDAR urban data. Infrared and Laser Engineering, 44, 363-369(2015).
[24] C C Wu, X P Lu, G L Li, et al. Research on filtering algorithm for LiDAR data based on TIN. Bulletin of Surveying and Mapping, 32-35(2013).
[25] Jianbin Ou, Wenfei Luo, Chang Liu. Research on land use/cover classification based on GF-1 and multi-source data combination. Journal of South China Normal University (Natural Science Edition), 51, 92-97(2019).
[26] [26] Titan Brochure Specifications, 2015. Optech Titan multispectral lidar systemhigh precision environmental mapping[ZOL].(20160112)[20220805].http:www.teledyneoptech.comwpcontentuploadsTitanSpecsheet150515WEB.pdf.
[27] N Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66(1979).
[28] Fajie Feng, Yazhou Ding, Junping Li, et al. Airborne LiDAR point cloud filtering using saliency division. Infrared and Laser Engineering, 49, 20190439(2020).
[29] Bingtao Chang, Chuanfa Chen, Jiaojiao Guo, et al. Interpolation-based filtering with segmentation for airborne LiDAR point clouds. Infrared and Laser Engineering, 50, 20200369(2021).
Get Citation
Copy Citation Text
Liying Wang, Ze You, Ji Wu, Mahamadou CAMARA. Airborne MS-LiDAR data classification by combining NDRI features and spatial correlation[J]. Infrared and Laser Engineering, 2023, 52(2): 20220376
Category: Image processing
Received: May. 31, 2022
Accepted: --
Published Online: Mar. 13, 2023
The Author Email: