Infrared and Laser Engineering, Volume. 52, Issue 2, 20220376(2023)

Airborne MS-LiDAR data classification by combining NDRI features and spatial correlation

Liying Wang1, Ze You1, Ji Wu2, and Mahamadou CAMARA1
Author Affiliations
  • 1School of Geomatics, Liaoning Technical University, Fuxin 123000, China
  • 2Heilongjiang Institute of Geomatics Engineering, Harbin 150081, China
  • show less
    References(29)

    [1] L Macarringue, É Bolfe, P Pereira. Developments in land use and land cover classification techniques in remote sensing: A review. Journal of Geographic Information System, 14, 1-28(2022).

    [2] M Digra, R Dhir, N Sharma. Land use land cover classification of remote sensing images based on the deep learning approaches: A statistical analysis and review. Arabian Journal of Geosciences, 15, 1003(2022).

    [3] R E Van. The first multispectral airborne lidar sensor. GeoInformatics, 18, 10(2015).

    [4] V Wichmann, M Bremer, J Lindenberger, et al. Evaluating the potential of multispectral airborne lidar for topographic mapping and land cover classification. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 113-115(2015).

    [5] Jixian Zhang, Xiangguo Lin, Xinlian Liang. Advances and prospects of information extraction from point clouds. Acta Geodaetica et Cartographica Sinica, 46, 1460-1469(2017).

    [6] Suoyan Pan, Haiyan Guan. Object classification using airborne multispectral LiDAR data. Acta Geodaetica et Cartographica Sinica, 47, 198-207(2018).

    [7] L Z Huo, C A Silva, C Klauberg, et al. Supervised spatial classification of multispectral LiDAR data in urban areas. Plos One, 13, e0206185(2018).

    [8] T A Teo, H M Wu. Analysis of land cover classification using multi-wavelength LiDAR system. Applied Sciences, 7, 1-20(2017).

    [9] Q W Wang, Y F Gu. A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 58, 1568-1586(2019).

    [10] Shuang Cao, Suoyan Pan, Haiyan Guan. Classification of airborne multispectral LiDAR for random forest features. Bulletin of Surveying and Mapping, 79-84(2019).

    [11] L Matkainen, J Hyypa, P Litkey. Multispectral airborne laser scanning for automated map updating. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 323-330(2016).

    [12] L Matkainen, K Karila, J Hyyppa, et al. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 298-313(2017).

    [13] B Chen, S Shi, W Gong, et al. Multispectral LiDAR point cloud classification: A two-step approach. Remote Sensing, 9, 1-17(2017).

    [14] S Pan, H Guan, Y Yu, et al. A comparative land-cover classification feature study of learning algorithms: DBM, PCA, and RF using multispectral LiDAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 1314-1326(2019).

    [15] S Pan, H Guan, Y Yu, et al. Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 241-254(2020).

    [16] J Fernandez-diaz, W Carter, C Glennie, et al. Capability assessment and performance metrics for the Titan multispectral mapping LiDAR. Remote Sensing, 8, 936(2016).

    [17] S Morsy, A Shaker, A El-rabbany. Multispectral LiDAR data for land cover classification of urban areas. Sensors, 17, 958(2017).

    [18] A Shakera, W Y Yan, P E Larocqueb. Automatic land-water classification using multispectral airborne LiDAR data for near-shore and river environments. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 94-108(2019).

    [19] E Ahokas, J Hyyppä, X Yu. Towards automatic single-sensor mapping by multispectral airborne laser scanning. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B3, 155-162(2016).

    [20] X L Zou, G H Zhao, J Li, et al. 3D land cover classification based on multispectral lidar point clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1, 741-747(2016).

    [21] D Li, X Shen, H Guan, et al. AGFP-Net: Attentive geometric feature pyramid network for land cover classification using airborne multispectral LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 108, 102723(2022).

    [22] Leiguang Wang, Ruozheng Geng, Qinling Dai, et al. Conditional random field classification method based on hyperspectral-LiDAR fusion. Infrared and Laser Engineering, 50, 20210112(2021).

    [23] Meiling Sun, Yongshu Li, Qiang Chen, et al. Iterative multi-scale filter based on morphological opening by reconstruction for LiDAR urban data. Infrared and Laser Engineering, 44, 363-369(2015).

    [24] C C Wu, X P Lu, G L Li, et al. Research on filtering algorithm for LiDAR data based on TIN. Bulletin of Surveying and Mapping, 32-35(2013).

    [25] Jianbin Ou, Wenfei Luo, Chang Liu. Research on land use/cover classification based on GF-1 and multi-source data combination. Journal of South China Normal University (Natural Science Edition), 51, 92-97(2019).

    [26] [26] Titan Brochure Specifications, 2015. Optech Titan multispectral lidar systemhigh precision environmental mapping[ZOL].(20160112)[20220805].http:www.teledyneoptech.comwpcontentuploadsTitanSpecsheet150515WEB.pdf.

    [27] N Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66(1979).

    [28] Fajie Feng, Yazhou Ding, Junping Li, et al. Airborne LiDAR point cloud filtering using saliency division. Infrared and Laser Engineering, 49, 20190439(2020).

    [29] Bingtao Chang, Chuanfa Chen, Jiaojiao Guo, et al. Interpolation-based filtering with segmentation for airborne LiDAR point clouds. Infrared and Laser Engineering, 50, 20200369(2021).

    Tools

    Get Citation

    Copy Citation Text

    Liying Wang, Ze You, Ji Wu, Mahamadou CAMARA. Airborne MS-LiDAR data classification by combining NDRI features and spatial correlation[J]. Infrared and Laser Engineering, 2023, 52(2): 20220376

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: May. 31, 2022

    Accepted: --

    Published Online: Mar. 13, 2023

    The Author Email:

    DOI:10.3788/IRLA20220376

    Topics