Laser & Optoelectronics Progress, Volume. 55, Issue 7, 71601(2018)

Effect of Gold Nanoparticles on Fluorescence Spontaneous Emission of Quantum Dots

Wan Jianing1, Lin Yu1, Zhong Ying2, and Liu Haitao1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(40)

    [1] [1] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.

    [2] [2] Baba K, Nishida K. Single-molecule tracking in living cells using single quantum dot applications[J]. Theranostics, 2012, 2(7): 655-667.

    [3] [3] Zhu X M, Wang X M, Feng G, et al. Quantum dot conjugated RGD for targeted in vivo imaging of laryngocarcinoma vessel[J]. Chinese Journal of Lasers, 2014, 41(5): 0504002.

    [4] [4] Lent C S, Isaksen B, Lieberman M. Molecular quantum-dot cellular automata[J]. Journal of the American Chemical Society, 2003, 125(4): 1056-1063.

    [5] [5] Lidke K A, Rieger B, Jovin T M, et al. Superresolution by localization of quantum dots using blinking statistics[J]. Optics Express, 2005, 13(18): 7052-7062.

    [6] [6] Antelman J, Wilking-Chang C, Weiss S, et al. Nanometer distance measurements between multicolor quantum dots[J]. Nano Letters, 2009, 9(5): 2199-2205.

    [7] [7] Chen W B, Ma H, Ye J X, et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110003.

    [8] [8] Wang H P, Wang G L, Qiu P, et al. Design and characteristics analysis of single photon detector based on quantum-dot field effect transistor[J]. Chinese Journal of Lasers, 2013, 40(1): 0118001.

    [9] [9] Qasim K, Lei W, Li Q. Quantum dots for light emitting diodes[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3173-3185.

    [10] [10] Tan H, Ni Z Y, Pi X D, et al. Research progress in application of silicon quantum dots in optoelectronic devices[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030006.

    [11] [11] Yang W H, Wang H L, Wang Z X, et al. Wavelength conversion efficiency of quantum dot semiconductor optical amplifier[J]. Acta Optica Sinica, 2017, 37(4): 0406005.

    [12] [12] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

    [13] [13] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

    [14] [14] Liu Z, Li E, Shalaev V M, et al. Near field enhancement in silver nanoantenna-superlens systems[J]. Applied Physics Letters, 2012, 101(2): 021109.

    [15] [15] Huang H T, Li M, Jin L, et al. Passively Q-switched solid-state laser using gold nanorod as saturable absorber[J]. Chinese Journal of Lasers, 2017, 44(7): 0703021.

    [16] [16] Li M, Cushing S K, Liang H, et al. Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA[J]. Analytical Chemistry, 2013, 85(4): 2072-2078.

    [17] [17] Mosier-Boss P A. Review of SERS substrates for chemical sensing[J]. Nanomaterials, 2017, 7(6): 142.

    [18] [18] Shi S, Atay T, Urabe H, et al. Large enhancement of fluorescence from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons[J]. Nano Letters, 2005, 5(8): 1557-1561.

    [20] [20] Munechika K, Chen Y, Tillack A F, et al. Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms[J]. Nano Letters, 2010, 10(7): 2598-2603.

    [21] [21] Ratchford D, Shafiei F, Kim S, et al. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle[J]. Nano Letters, 2011, 11(3): 1049-1054.

    [22] [22] Ray K, Badugu R, Lakowicz J R. Metal-enhanced fluorescence from CdTe nanocrystals: A single-molecule fluorescence study[J]. Journal of the American Chemical Society, 2006, 128(28): 8998-8999.

    [23] [23] Belacel C, Habert B, Bigourdan F, et al. Controlling spontaneous emission with plasmonic optical patch antennas[J]. Nano Letters, 2013, 13(4): 1516-1521.

    [24] [24] Hoang T B, Akselrod G M, Argyropoulos C, et al. Ultrafast spontaneous emission source using plasmonic nanoantennas[J]. Nature Communications, 2015, 6: 7788.

    [25] [25] Yuan C T, Yu P, Ko H C, et al. Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots[J]. Acs Nano, 2009, 3(10): 3051-3056.

    [26] [26] Pfeiffer M, Lindfors K, Wolpert C, et al. Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna[J]. Nano Letters, 2010, 10(11): 4555-4558.

    [27] [27] Kinkhabwala A A, Mullen K, Fan S, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 2009, 3(11): 654-657.

    [28] [28] Kummar S, Ciesielski T E, Fogarasi M C. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods[J]. Acs Nano, 2014, 8(5): 4440-4449.

    [29] [29] Yi M, Zhang D, Wen X, et al. Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film[J]. Plasmonics, 2011, 6(2): 213-217.

    [30] [30] Qin A J, Zhang Y, Han N, et al. Preparation and self-assembly of amphiphilic polymer with aggregation-induced emission characteristics[J]. Science China Chemistry, 2012, 55(5): 772-778.

    [31] [31] Thomas S W, Joly G D, Swager T M. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chemical Reviews, 2007, 107 (4): 1339-1386.

    [32] [32] Singhal A, Skandan G, Wang A, et al. On nanoparticle aggregation during vapor phase synthesis[J]. Nanostructured Materials, 1999, 11(4): 545-552.

    [33] [33] Subero J, Ning Z, Ghadiri M, et al. Effect of interface energy on the impact strength of agglomerates[J]. Powder Technology, 1999, 105(1/2/3): 66-73.

    [34] [34] Ming T, Kou X, Chen H, et al. Ordered gold nanostructure assemblies formed by droplet evaporation[J]. Angewandte Chemie, 2008, 47(50): 9685-9690.

    [36] [36] Muskens O L, Giannini V, Sanchez-Gil J A, et al. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas[J]. Nano Letters, 2007, 7(9): 2871-2875.

    [37] [37] Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 2014, 8(11): 835-840.

    [38] [38] Galland C, Ghosh Y, Steinbrueck A, et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots[J]. Nature, 2011, 479(7372): 203-207.

    [39] [39] Jia H W, Liu H T, Zhong Y. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas[J]. Scientific Reports, 2015, 5: 8456.

    [40] [40] Sauvan C, Hugonin J P, Maksymov I S, et al. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators[J]. Physical Review Letters, 2013, 110(23): 237401.

    [41] [41] Jia H W, Yang F, Zhong Y, et al. Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas[J]. Photonics Research, 2016, 4(6): 293-305.

    Tools

    Get Citation

    Copy Citation Text

    Wan Jianing, Lin Yu, Zhong Ying, Liu Haitao. Effect of Gold Nanoparticles on Fluorescence Spontaneous Emission of Quantum Dots[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71601

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Jan. 5, 2018

    Accepted: --

    Published Online: Jul. 20, 2018

    The Author Email: Haitao Liu (liuht@nankai.edu.cn)

    DOI:10.3788/lop55.071601

    Topics