Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 469(2023)

Analysis of Li Metal Anode by Machine Learning Potential

LAI Genming1,*... JIAO Junyu1, JIANG Yao2, ZHENG Jiaxin1,2 and OUYANG Chuying2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(41)

    [1] [1] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359?367.

    [2] [2] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2): 513?537.

    [3] [3] SHEN X, ZHANG X Q, DING F, et al. Advanced electrode materials in lithium batteries: Retrospect and prospect[J]. Energy Mater Advances, 2021, 2021: 1205324.

    [4] [4] LIU B, ZHANG J G, XU W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833?845.

    [5] [5] CHENG X B, LIU H, YUAN H, et al. A perspective on sustainable energy materials for lithium batteries[J]. SusMat, 2021, 1(1): 38?50.

    [6] [6] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem Rev, 2017, 117(15): 10403?10473.

    [7] [7] PAUL P P, MCSHANE E J, COLCLASURE A M, et al. A review of existing and emerging methods for lithium detection and characterization in Li-ion and Li-metal batteries[J]. Adv Energy Mater, 2021, 11(17): 2100372.

    [8] [8] HE Y, REN X, XU Y, et al. Origin of lithium whisker formation and growth under stress[J]. Nat Nanotechnol, 2019, 14(11): 1042?1047.

    [9] [9] WANG S, XU H, LI W, et al. Interfacial chemistry in solid-state batteries: Formation of interphase and its consequences[J]. J Am Chem Soc, 2018, 140(1): 250?257.

    [10] [10] SUN Y, YANG T, JI H, et al. Boosting the optimization of lithium metal batteries by molecular dynamics simulations: A perspective[J]. Adv Energy Mater, 2020, 10(41): 2002373.

    [11] [11] ALBERTUS P, ANANDAN V, BAN C, et al. Challenges for and pathways toward Li-metal-based all-solid-state batteries[J]. ACS Energy Lett, 2021, 6(4): 1399?1404.

    [12] [12] LIU Y, GUO B, ZOU X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Mater, 2020, 31: 434?450.

    [14] [14] BEHLER J, PARRINELLO M. Generalized neural-network representation of high-dimensional potential-energy surfaces[J]. Phys Rev Lett, 2007, 98(14): 146401.

    [15] [15] ZHANG L, HAN J, WANG H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics[J]. Phys Rev Lett, 2018, 120(14): 143001.

    [16] [16] BARTóK A P, PAYNE M C, KONDOR R, et al. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons[J]. Phys Rev Lett, 2010, 104(13): 136403.

    [17] [17] ZHANG L, HAN J, WANG H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics[J]. Phys Rev Lett, 2018, 120(14): 143001.

    [18] [18] LAI G, JIAO J, FANG C, et al. A deep neural network interface potential for Li?Cu systems[J]. Adv Mater Interfaces, 2022, 9(27): 2201346.

    [19] [19] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652?657.

    [20] [20] JANEK J, ZEIER W G. A solid future for battery development[J]. Nat Energy, 2016, 1(9): 1?4.

    [21] [21] ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nat Energy, 2017, 3(1): 16?21.

    [22] [22] GAO X, ZHOU Y N, HAN D, et al. Thermodynamic understanding of Li-dendrite formation[J]. Joule, 2020, 4(9): 1864?1879.

    [23] [23] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2): 513?537.

    [24] [24] ZHANG Y, ZUO T T, POPOVIC J, et al. Towards better Li metal anodes: challenges and strategies[J]. Mater Today, 2020, 33: 56?74.

    [25] [25] JANA A, WOO S I, VIKRANT K S N, et al. Electrochemomechanics of lithium dendrite growth[J]. Energy Environ Sci, 2019, 12(12): 3595?3607.

    [26] [26] WANG S-H, YIN Y X, ZUO T T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Adv Mater, 2017, 29(40): 1703729.

    [27] [27] WU J, RAO Z, LIU X, et al. Polycationic polymer layer for air-stable and dendrite-free Li metal anodes in carbonate electrolytes[J]. Adv Mater, 2021, 33(12): 2007428.

    [28] [28] XU X, LIU Y, HWANG J Y, et al. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode[J]. Adv Energy Mater, 2020, 10(44): 2002390.

    [29] [29] LIU Y, XU X, SADD M, et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal[J]. Adv Sci, 2021, 8(5): 2003301.

    [30] [30] J?CKLE M, GRO? A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth[J]. J Chem Phys, 2014, 141(17): 174710.

    [31] [31] J?CKLE M, HELMBRECHT K, SMITS M, et al. Self-diffusion barriers: Possible descriptors for dendrite growth in batteries?[J]. Energy Environ Sci, 2018, 11(12): 3400?3407.

    [32] [32] JIAO J, XIAO R, HAN M, et al. Impact of hydrogen on lithium storage on graphene edges[J]. Appl Surf Sci, 2020, 515: 145886.

    [33] [33] LI L, BASU S, WANG Y, et al. Self-heating-induced healing of lithium dendrites[J]. Science, 2018, 359(6383): 1513?1516.

    [34] [34] YANG M, LIU Y, NOLAN A M, et al. Interfacial atomistic mechanisms of lithium metal stripping and plating in solid-state batteries[J]. Adv Mater, 2021, 33(11): 2008081.

    [35] [35] WANG X, PAWAR G, LI Y, et al. Glassy Li metal anode for high-performance rechargeable Li batteries[J]. Nat Mater, 2020, 19(12): 1339?1345.

    [36] [36] BEHLER J. First principles neural network potentials for reactive simulations of large molecular and condensed systems[J]. Angew Chem Int Ed, 2017, 56(42): 12828?12840.

    [37] [37] NICHOL A, ACKLAND G J. Property trends in simple metals: An empirical potential approach[J]. Phys Rev B, 2016, 93(18): 184101.

    [38] [38] VELLA J R, STILLINGER F H, PANAGIOTOPOULOS A Z, et al. A comparison of the predictive capabilities of the embedded-atom method and modified embedded-atom method potentials for lithium[J]. J Phys Chem B, 2015, 119(29): 8960?8968.

    [39] [39] JIAO J, LAI G, ZHAO L, et al. Self-healing mechanism of lithium in lithium metal[J]. Adv Sci (Weinh), 2022: e2105574.

    [40] [40] DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. J Am Chem Soc, 2013, 135(11): 4450?4456.

    [41] [41] STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials[J]. Modell Simul Mater Sci Eng, 2012, 20(4): 045021.

    [42] [42] LAI Genming, JIAO Junyu, FANG Chi, et al. The mechanism of Li deposition on the Cu substrates in the anode-free Li metal batteries[J].Small, 2022. Doi: 10.1002/smll.202205416.

    Tools

    Get Citation

    Copy Citation Text

    LAI Genming, JIAO Junyu, JIANG Yao, ZHENG Jiaxin, OUYANG Chuying. Analysis of Li Metal Anode by Machine Learning Potential[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 469

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Sep. 26, 2022

    Accepted: --

    Published Online: Mar. 11, 2023

    The Author Email: Genming LAI (genmingl@stu.pku.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220793

    Topics