Infrared and Laser Engineering, Volume. 50, Issue 9, 20200467(2021)
Research progress of infrared and visible image fusion technology
[1] Li S T, Kang X D, Fang L Y, et al. Pixel-level image fusion: A survey of the state of the art[J]. Information Fusion, 33, 100-112(2017).
[2] Ma J Y, Ma Y, Li C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 45, 153-178(2019).
[3] Short N J, Yuffa A J, Videen G, et al. Effects of surface materials on polarimetric-thermal measurements: Applications to face recognition[J]. Applied Optics, 55, 5226-5233(2016).
[4] [4] Heo J, Kong S G, Abidi B R. Fusion of visual thermal signatures with eyeglass removal f robust face recognition[C]Computer Vision Pattern Recognition Wkshop, 2004,19: 122127.
[5] [5] Kumar K S, Kavitha G, Subramanian R, et al. MATLABA Ubiquitous Tool f the Practical Engineer[M]. Croatia: In Tech, 2011: 307326.
[6] Castillo J C, Fernandez-Caballero A, Serrano-Cuerda J, et al. Smart environment architecture for robust people detection by infrared and visible video fusion[J]. Journal of Ambient Intelligence and Humanized Computing, 8, 223-237(2017).
[7] Fendri E, Boukhriss R R, Hammami M. Fusion of thermal infrared and visible spectra for robust moving object detection[J]. Pattern Analysis and Applications, 20, 907-926(2017).
[8] Apatean A, Rogozan A, Bensrhair A. Visible-infrared fusion schemes for road obstacle classification[J]. Transportation Research Part C-Emerging Technologies, 35, 180-192(2013).
[9] Bulanon D M, Burks T F, Alchanatis V. Image fusion of visible and thermal images for fruit detection[J]. Biosystems Engineering, 103, 12-22(2009).
[10] Raza S E A, Sanchez V, Prince G, et al. Registration of thermal and visible light images of diseased plants using silhouette extraction in the wavelet domain[J]. Pattern Recognition, 48, 2119-2128(2015).
[11] Burt P, Adelson E. The laplacian pyramid as a compact image code[J]. IEEE Transations on Communications, 31, 532-540(1983).
[12] Toet A. Image fusion by a ration of low-pass pyramid[J]. Pattern Recognition Letters, 9, 245-253(1989).
[13] Toet A, Vanruyven L J, Valeton J M. Merging thermal and visual images by a contrast pyramid[J]. Optical Engineering, 28, 789-792(1989).
[14] Toet A. A morphological pyramidal image decomposition[J]. Pattern Recognition Letters, 9, 255-261(1989).
[15] Freeman W T, Adelson E H, Intell M. The design and use of steerable filters[J]. IEEE Transpattern Anal, 13, 891-906(1991).
[16] Yu X L, Ren J L, Chen Q, et al. A false color image fusion method based on multi-resolution color transfer in normalization YCBCR space[J]. Optik, 125, 6010-6016(2014).
[17] Jin H Y, Jiao L C, Liu F, et al. Fusion of infrared and visual images based on contrast pyramid directional filter banks using clonal selection optimizing[J]. Optical Engineering, 47, 27002-27008(2008).
[18] [18] He D X, Meng Y, Wang C Y. Contrast pyra based image fusion scheme f infrared image visible image[C]2011 IEEE International Geoscience Remote Sensing Symposium, 2011: 597600.
[19] Grossmann A, Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape[J]. Siam Journal on Mathematical Analysis, 15, 723-736(1984).
[20] Mallat S G. A theory for multiresolution signal decomposition-the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674-693(1989).
[21] Niu Y, Xu S, Wu L, et al. Airborne infrared and visible image fusion for target perception based on target region segmentation and discrete wavelet transform[J]. Mathematical Problems in Engineering, 2012, 732-748(2012).
[22] Madheswari K, Venkateswaran N. Swarm intelligence based optimisation in thermal image fusion using dual tree discrete wavelet transform[J]. Quantitative Infrared Thermography Journal, 14, 24-43(2017).
[23] Zou Y, Liang X, Wang T. Visible and infrared image fusion using the lifting wavelet[J]. Telkomnika Indonesian Journal of Electrical Engineering, 11, 6290-6295(2013).
[24] Chai P F, Luo X Q, Zhang Z C. Image fusion using quaternion wavelet transform and multiple features[J]. IEEE Access, 5, 6724-6734(2017).
[25] Yan X, Qin H L, Li J, et al. Infrared and visible image fusion with spectral graph wavelet transform[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 32, 1643-1652(2015).
[26] Tao G Q, Li D P, Lu G H. On image fusion based on different fusion rules of wavelet transform[J]. Acta Photonica Sinica, 33, 221-224(2004).
[27] Selesnick I W, Baraniuk R G, Kingsbury N G. The dual-tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 22, 123-151(2005).
[28] Da Cunha A L, Zhou J P, Do M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 15, 3089-3101(2006).
[29] [29] Yin S, Cao L, Tan Q, et al. Infrared visible image fusion based on NSCT fuzzy logic[C]Proceedings of the 2010 IEEE International Conference on Mechatronics Automation, 2010,5: 671675.
[30] Liu H X, Zhu T H, Zhao J J. Infrared and visible image fusion based on region of interest detection and nonsubsampled contourlet transform[J]. Journal of Shanghai Jiaotong University (Science), 18, 526-534(2013).
[31] Guo K, Labate D. Optimally sparse multidimensional representation using shearlets[J]. Siam Journal on Mathematical Analysis, 39, 298-318(2007).
[32] Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 25, 25-46(2008).
[33] Kong W W, Wang B H, Lei Y. Technique for infrared and visible image fusion based on non-subsampled shearlet transform and spiking cortical model[J]. Infrared Physics & Technology, 71, 87-98(2015).
[34] Kong W, Lei Y, Zhao H. Adaptive fusion method of visible light and infrared images based on non-subsampled shearlet transform and fast non-negative matrix factorization[J]. Infrared Physics & Technology, 67, 161-172(2014).
[35] Hu H M, Wu J W, Li B, et al. An adaptive fusion algorithm for visible and infrared videos based on entropy and the cumulative distribution of gray levels[J]. IEEE Transactions on Multimedia, 19, 2706-2719(2017).
[36] Zhang X Y, Ma Y, Fan F, et al. Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 34, 1400-1410(2017).
[37] Yang B, Li S T. Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 59, 884-892(2010).
[38] Liu Y, Liu S P, Wang Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 24, 147-164(2015).
[39] Yin H T. Sparse representation with learned multiscale dictionary for image fusion[J]. Neurocomputing, 148, 600-610(2015).
[40] Yang B, Li S T. Pixel-level image fusion with simultaneous orthogonal matching pursuit[J]. Information Fusion, 13, 10-19(2012).
[41] Liu Y, Wang Z F. Simultaneous image fusion and denoising with adaptive sparse representation[J]. Iet Image Processing, 9, 347-357(2015).
[42] Yin H T, Li S T. Multimodal image fusion with joint sparsity model[J]. Optical Engineering, 50, 067007-067009(2011).
[43] Nejati M, Samavi S, Shirani S. Multi-focus image fusion using dictionary-based sparse representation[J]. Information Fusion, 25, 72-84(2015).
[44] Wang J, Peng J Y, Feng X Y, et al. Fusion method for infrared and visible images by using non-negative sparse representation[J]. Infrared Physics & Technology, 67, 477-489(2014).
[45] Zhang Q, Levine M D. Robust multi-focus image fusion using multi-task sparse representation and spatial context[J]. IEEE Transactions on Image Processing, 25, 2045-2058(2016).
[46] Zhang Q H, Fu Y L, Li H F, et al. Dictionary learning method for joint sparse representation-based image fusion[J]. Optical Engineering, 52, 1-11(2013).
[47] Yu N N, Qiu T S, Bi F, et al. Image features extraction and fusion based on joint sparse representation[J]. IEEE Journal of Selected Topics in Signal Processing, 5, 1074-1082(2011).
[48] [48] Engan K, Aase S O, Husoy J H. Method of optimal directions f frame design[C]1999 IEEE International Conference on Acoustics, Speech, Signal Processing,1999: 24432446.
[49] Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 54, 4311-4322(2006).
[50] Rubinstein R, Zibulevsky M, Elad M. Double sparsity: Learning sparse dictionaries for sparse signal approximation[J]. IEEE Transactions on Signal Processing, 58, 1553-1564(2010).
[51] Kim M, Han D K, Ko H. Joint patch clustering-based dictionary learning for multimodal image fusion[J]. Information Fusion, 27, 198-214(2016).
[52] [52] Dong W S, Li X, Zhang L, et al. Sparsitybased image denoising via dictionary learning structural clustering[C]2011 IEEE Conference on Computer Vision Pattern Recognition (CVPR), 2011: 457464.
[53] Chatterjee P, Milanfar P. Clustering-based denoising with locally learned dictionaries[J]. IEEE Transactions on Image Processing, 18, 1438-1451(2009).
[54] Yao Y, Guo P, Xin X, et al. Image fusion by hierarchical joint sparse representation[J]. Cognitive Computation, 6, 281-292(2014).
[55] Ophir B, Lustig M, Elad M. Multi-scale dictionary learning using wavelets[J]. IEEE Journal of Selected Topics in Signal Processing, 5, 1014-1024(2011).
[56] Lu X Q, Zhang B H, Zhao Y, et al. Theinfrared and visible image fusion algorithm based on target separation and sparse representation[J]. Infrared Physics & Technology, 67, 397-407(2014).
[57] Zhu Z Q, Yin H P, Chai Y, et al. A novel multi-modality image fusion method based on image decomposition and sparse representation[J]. Information Sciences, 432, 516-529(2018).
[58] Wang K P, Qi G Q, Zhu Z Q, et al. A novel geometric dictionary construction approach for sparse representation based image fusion[J]. Entropy, 19, 306(2017).
[59] Zhang Q, Liu Y, Blum R S, et al. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review[J]. Information Fusion, 40, 57-75(2018).
[60] Kong W W, Zhang L J, Lei Y. Novel fusion method for visible light and infrared images based on NSST-SF-PCNN[J]. Infrared Physics & Technology, 65, 103-112(2014).
[61] Xiang T Z, Yan L, Gao R R. A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain[J]. Infrared Physics & Technology, 69, 53-61(2015).
[62] [62] Ma L J, Zhao C H. An effective image fusion method based on nonsubsampled contourlet transfm pulse coupled neural wk[C]Proceedings of the 2nd International Conference on Computer Infmation Applications (ICCIA 2012), 2012: 812.
[63] [63] Li Y, Song GH, Yang SC. Multisens image fusion by NSCTPCNN transfm[C]2011 IEEE International Conference on Computer Science Automation Engineering, 2011: 638642.
[64] Kong W W, Lei Y J, Lei Y, et al. Image fusion technique based on non-subsampled contourlet transform and adaptive unit-fast-linking pulse-coupled neural network[J]. Iet Image Processing, 5, 113-121(2011).
[65] Qu X B, Yan J W, Xiao H Z, et al. Image fusion algorithm based on spatia frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform Domain[J]. Acta Automatica Sinica, 12, 1508-1514(2009).
[66] El-taweel G S, Helmy A K. Image fusion scheme based on modified dual pulse coupled neural network[J]. Iet Image Processing, 7, 407-414(2013).
[67] Yu Z, Yan L, Han N, et al. Image fusion algorithm based on contourlet transform and PCNN for detecting obstacles in forests[J]. Cybernetics and Information Technologies, 15, 116-125(2015).
[68] Liu S, Piao Y, Tahir M. Research on fusion technology based on low-light visible image and infrared image[J]. Optical Engineering, 55, 123104(2016).
[69] [69] Li H, Wu X J, Kittler J. Infrared visible image fusion using a deep learning framewk[C]2018 24th International Conference on Pattern Recognition, 2018: 27052710.
[70] [70] Ren X, Meng F, Hu T, et al. Infraredvisible image fusion based on convolutional neural wks (CNN)[C]International Conference on Intelligent Science Big Data Engineering, 2018: 301307.
[71] Ma J Y, Yu W, Liang P W, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 48, 11-26(2019).
[72] Li H, Liu L, Huang W, et al. An improved fusion algorithm for infrared and visible images based on multi-scale transform[J]. Infrared Physics & Technology, 74, 28-37(2016).
[73] Fu Z Z, Wang X, Xu J, et al. Infrared and visible images fusion based on RPCA and NSCT[J]. Infrared Physics & Technology, 77, 114-123(2016).
[74] Cvejic N, Bull D, Canagarajah N. Region-based multimodal image fusion using ICA bases[J]. IEEE Sensors Journal, 7, 743-751(2007).
[75] [75] Mou J, Gao W, Song Z. Image fusion based on nonnegative matrix factization infrared feature extraction[C] 2013 6th International Congress on Image Signal Processing (CISP), 2013: 10461050.
[76] Liu Z W, Feng Y, Chen H, et al. A fusion algorithm for infrared and visible based on guided filtering and phase congruency in NSST domain[J]. Optics and Lasers in Engineering, 97, 71-77(2017).
[77] Bavirisetti D P, Dhuli R. Two-scale image fusion of visible and infrared images using saliency detection[J]. Infrared Physics & Technology, 76, 52-64(2016).
[78] Gan W, Wu X H, Wu W, et al. Infrared and visible image fusion with the use of multi-scale edge-preserving decomposition and guided image filter[J]. Infrared Physics & Technology, 72, 37-51(2015).
[79] Cui G M, Feng H J, Xu Z H, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 341, 199-209(2015).
[80] Zhao J F, Zhou Q, Chen Y T, et al. Fusion of visible and infrared images using saliency analysis and detail preserving based image decomposition[J]. Infrared Physics & Technology, 56, 93-99(2013).
[81] Zhang B H, Lu X Q, Pei H Q, et al. A fusion algorithm for infrared and visible images based on saliency analysis and non-subsampled shearlet transform[J]. Infrared Physics & Technology, 73, 286-297(2015).
[82] Meng F, Song M, Guo B, et al. Image fusion based on object region detection and non-subsampled contourlet transform[J]. Computers & Electrical Engineering, 62, 375-383(2017).
[83] Cai J J, Cheng Q M, Peng M J, et al. Fusion of infrared and visible images based on nonsubsampled contourlet transform and sparse K-SVD dictionary learning[J]. Infrared Physics & Technology, 82, 85-95(2017).
[84] Yin M, Duan P H, Liu W, et al. A novel infrared and visible image fusion algorithm based on shift-invariant dual-tree complex shearlet transform and sparse representation[J]. Neurocomputing, 226, 182-191(2017).
[85] Chai Y, Li H F, Qu J F. Image fusion scheme using a novel dual-channel PCNN in lifting stationary wavelet domain[J]. Optics Communications, 283, 3591-3602(2010).
[86] Yang B, Li S T. Visual attention guided image fusion with sparse representation[J]. Optik, 125, 4881-4888(2014).
[87] Liu C H, Qi Y, Ding W R. Infrared and visible image fusion method based on saliency detection in sparse domain[J]. Infrared Physics & Technology, 83, 94-102(2017).
[88] Kong W W. Technique for gray-scale visual light and infrared image fusion based on non-subsampled shearlet transform[J]. Infrared Physics & Technology, 63, 110-118(2014).
[89] Adu J H, Gan J H, Wang Y, et al. Image fusion based on nonsubsampled contourlet transform for infrared and visible light image[J]. Infrared Physics & Technology, 61, 94-100(2013).
[90] Liu Z, Tsukada K, Hanasaki K, et al. Image fusion by using steerable pyramid[J]. Pattern Recognition Letters, 22, 929-939(2001).
[91] G Liu, Z L Jing, S Y Sun, et al. Image fusion based on expectation maximization algorithm and steerable pyramid[J]. Chinese Optics Letters, 2, 18-21(2004).
[92] [92] Deng H, Ma Y. Image Fusion based on steerable pyra PCNN[C]2009 Second International Conference on the Applications of Digital Infmation Web Technologies, 2009: 569573.
[93] Zhan L, Zhuang Y, Huang L. Infrared and visible images fusion method based on discrete wavelet transform[J]. Journal of Computers, 28, 057-071(2017).
[94] Saeedi J, Faez K. Infrared and visible image fusion using fuzzy logic and population-based optimization[J]. Applied Soft Computing, 12, 1041-1054(2012).
[95] Chang L H, Feng X C, Zhang R, et al. Image decomposition fusion method based on sparse representation and neural network[J]. Applied Optics, 56, 7969-7977(2017).
[96] [96] Omri F, Foufou S, Abidi M. NIR visible image fusion f improving face recognition at long distance[C]International Conference on Image Signal Processing, 2014: 549557.
[97] [97] Singh S, Gyaourova A, Bebis G, et al. Infrared visible image fusion f face recognition[C]Biometric Technology f Human Identification, International Society f Optics Photonics, 2004: 585596.
[98] [98] Heo J, Kong S G, Abidi B R, et al. Fusion of visual thermal signatures with eyeglass removal f robust face recognition[C]2004 Conference on Computer Vision Pattern Recognition Wkshop, 2004: 122122.
[99] Abaza A, Bourlai T. On ear-based human identification in the mid-wave infrared spectrum[J]. Image Vision Computing, 31, 640-648(2013).
[100] Uzair M, Mahmood A, Mian A, et al. Periocular region-based person identification in the visible, infrared and hyperspectral Imagery[J]. Neurocomputing, 149, 854-867(2015).
[101] Han J G, Pauwels E J, de Zeeuw P. Fast saliency-aware multi-modality image fusion[J]. Neurocomputing, 111, 70-80(2013).
[102] [102] Schnelle S R, Chan A L. Enhanced target tracking through infraredvisible image fusion[C]14th International Conference on Infmation Fusion, 2011: 18.
[103] Jin X, Jiang Q, Yao S W, et al. A survey of infrared and visual image fusion methods[J]. Infrared Physics & Technology, 85, 478-501(2017).
[104] Toet A. Natural colour mapping for multiband nightvision imagery[J]. Information Fusion, 4, 155-166(2003).
[105] Toet A, Hogervorst M A. Progress in color night vision[J]. Optical Engineering, 51, 010901(2012).
[106] Davis J W, Sharma V. Background-subtraction using contour-based fusion of thermal and visible imagery[J]. Computer Vision and Image Understanding, 107, 162-182(2007).
[107] Niu Y F, Xu S T, Wu L Z, et al. Airborne infrared and visible image fusion for target perception based on target region segmentation and discrete wavelet transform[J]. Mathematical Problems in Engineering, 10, 732-748(2012).
[108] Bhatnagar G, Liu Z. A novel image fusion framework for night-vision navigation and surveillance[J]. Signal Image and Video Processing, 9, 165-175(2015).
[109] Paramanandham N, Rajendiran K. Multi sensor image fusion for surveillance applications using hybrid image fusion algorithm[J]. Multimedia Tools and Applications, 77, 12405-12436(2018).
[110] Tsagaris V, Anastassopoulos V. Fusion of visible and infrared imagery for night color vision[J]. Displays, 26, 191-196(2005).
[111] Hogervorst M A, Toet A. Fast natural color mapping for night-time imagery[J]. Information Fusion, 11, 69-77(2010).
[112] Mendoza F, Lu R F, Cen H Y. Comparison and fusion of four nondestructive sensors for predicting apple fruit firmness and soluble solids content[J]. Postharvest Biology and Technology, 73, 89-98(2012).
[113] Hanna B V, Gorbach A M, Gage F A, et al. Intraoperative assessment of critical biliary structures with visible range/infrared image fusion[J]. Journal of the American College of Surgeons, 206, 1227-1231(2008).
[114] Eslami M, Mohammadzadeh A. Developing a spectral-based strategy for urban object detection from airborne hyperspectral TIR and visible data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 1808-1816(2016).
[115] Han L, Wulie B, Yang Y L, et al. Direct fusion of geostationary meteorological satellite visible and infrared images based on thermal physical properties[J]. Sensors, 15, 703-714(2015).
[116] Li H G, Ding W R, Cao X B, et al. Image registration and fusion of visible and infrared integrated camera for medium-altitude unmanned aerial vehicle remote sensing[J]. Remote Sensing, 9, 441-469(2017).
[117] Chang X, Jiao L C, Liu F, et al. Multicontourlet-based adaptive fusion of infrared and visible remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 7, 549-553(2010).
[118] Lu X C, Zhang J P, Li T, et al. Synergetic classification of long-wave infrared hyperspectral and visible images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 3546-3557(2015).
[119] Gargano M, Bertani D, Greco M, et al. A perceptual approach to the fusion of visible and NIR images in the examination of ancient documents[J]. Journal of Cultural Heritage, 16, 518-525(2015).
[120] Kim S J, Deng F, Brown M S. Visual enhancement of old documents with hyperspectral imaging[J]. Pattern Recognition, 44, 1461-1469(2011).
[121] Feng Z J, Zhang X L, Yuan L Y, et al. Infrared target detection and location for visual surveillance using fusion scheme of visible and infrared images[J]. Mathematical Problems in Engineering, 2013, 831-842(2013).
[122] Zhao C, Guo Y, Wang Y. A fast fusion scheme for infrared and visible light images in NSCT domain[J]. Infrared Physics & Technology, 72, 266-275(2015).
[123] Zhang X L, Li X F, Li J. Validation and correlation analysis of metrics for evaluation performance of image fusion[J]. Acta Automatica Sinica, 40, 306-315(2014).
[124] Aardt V, J an. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Journal of Applied Remote Sensing, 2, 1-28(2008).
[125] Yun J, R ao. In-fibre Bragg grating sensors[J]. Measurement Science Technology, 8, 355(1997).
[126] Zhu X X, Bamler R. A sparse image fusion algorithm with application to pan-sharpening[J]. IEEE Transactions on Geoscience Remote Sensing, 51, 2827-2836(2012).
[127] Xydeas C S, V. P V. Objective image fusion performance measure[J]. Military Technical Courier, 56, 181-193(2000).
[128] Deshmukh M, Bhosale U. Image fusion and image quality assessment of fused images[J]. International Journal of Image Processing, 4, 484-508(2010).
[129] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Trans Image Process, 13, 600-612(2004).
[130] Li S, Yang B, Hu J. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 12, 74-84(2011).
[131] Qu X B, Yan J W, Xiao H Z, et al. Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain[J]. Acta Automatica Sinica, 34, 1508-1514(2008).
Get Citation
Copy Citation Text
Ying Shen, Chunhong Huang, Feng Huang, Jie Li, Mengjiao Zhu, Shu Wang. Research progress of infrared and visible image fusion technology[J]. Infrared and Laser Engineering, 2021, 50(9): 20200467
Category:
Received: Apr. 10, 2021
Accepted: --
Published Online: Oct. 28, 2021
The Author Email: Shu Wang (shu@fzu.edu.cn)