Journal of Inorganic Materials, Volume. 35, Issue 5, 573(2020)

CeO2 Modified Mn-Fe-O Composites and their Catalytic Performance for NH3-SCR of NO

Xiubing HUANG1, Peng WANG1, Jinzhang TAO2, and Zuoshuai XI1
Author Affiliations
  • 1School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 2Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Guangzhou 510310, China
  • show less
    References(32)

    [1] ZHANG H L, LONG H M, LI J X et al. Research progress in iron-based catalysts for the selective catalytic reduction of NOx by NH3[J]. Chinese J. Inorg. Chem., 35, 753-768(2019).

    [3] JI J H, CHANG H Z, MA L et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review[J]. Catal. Today, 175, 147-156(2011).

    [4] CHEN J, ZHENG Y Y, ZHANG Y B et al. Preparation of MnO2/ MWCNTs catalysts by a redox method and their activity in low- temperature SCR[J]. Chinese J. Inorg. Chem., 31, 1347-1354(2016).

    [5] YOU X C, SHENG Z Y, YU D Y et al. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature[J]. Appl. Surf. Sci., 423, 845-854(2017).

    [6] CHEN H P, QI X, LIANG Y H et al. Effect of Fe reduced-modifcation on TiO2 supported Fe-Mn catalyst for NO removal by NH3 at low temperature[J]. React. Kinet. Mech. Catal., 126, 327-339(2019).

    [7] GONG P J, XIE J L, FANG D et al. Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures[J]. Chinese J. Catal., 38, 1925-1934(2017).

    [8] WANG F M, SHEN B X, ZHU S W et al. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance[J]. Fuel, 249, 54-60(2019).

    [9] FANG D, HE F, LIU X Q et al. Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping[J]. Appl. Surf. Sci., 427, 45-55(2018).

    [10] YANG Y R, WANG M H, TAO Z L et al. Mesoporous Mn-Ti amorphous oxides: a robust low-temperature NH3-SCR catalyst[J]. Catal. Sci. Technol., 8, 6396-6406(2018).

    [11] XIONG Z B, WU C, HU Q et al. Promotional effect of microwave hydrothermal treatment on the low-temperature NH3-SCR activity over iron-based catalyst[J]. Chem. Eng. J., 286, 459-466(2016).

    [12] DU T Y, QU H X, LIU Q et al. Synthesis, activity and hydrophobicity of Fe-ZSM-5@silicalite-1 for NH3-SCR[J]. Chem. Eng. J., 262, 1199-1207(2015).

    [13] GAO F, KOLLAR M, KUKKADAPU R K et al. Fe/SSZ-13 as an NH3-SCR catalyst: A reaction kinetics and FTIR/Mössbauer spectroscopic study[J]. Appl. Catal. B-Environ., 164, 407-419(2015).

    [14] LIU Z M, SU H, CHEN B H et al. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3[J]. Chem. Eng. J., 299, 255-262(2016).

    [16] HUANG J, TONG Z, HUANG Y et al[J]. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Appl. Catal. B-Environ., 78, 309-314(2008).

    [18] CHEN Z H, WANG F R, LI H et al. Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J]. Int. Eng. Chem. Res., 51, 202-212(2012).

    [19] XIONG S C, LIAO Y, XIAO X et al. The mechanism of the effect of H2O on the low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel[J]. Catal. Sci. Technol., 5, 2132-2140(2015).

    [20] JIANG B Q, WU Z B, LIU Y et al. DRIFT Study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2[J]. J. Phys. Chem. C, 114, 4961-4965(2010).

    [21] JIN R B, LIU Y, WU Z B et al. Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst[J]. Catal. Today, 153, 84-89(2010).

    [23] LI J, PAN L, WANG J T et al. Low-temperature removal of NO by spherical activated carbon loaded with MnOx-CeO2 and melamine[J]. Chinese J. Inorg. Mater., 31, 1205-1211(2016).

    [24] ZHAO K, HAN W L, LU G X et al. Promotion of redox and stability features of doped Ce-W-Ti for NH3-SCR reaction over a wide temperature range[J]. Appl. Surf. Sci., 379, 316-322(2016).

    [25] MA Z R, WENG D, WU X D et al. A novel Nb-Ce/WOx-TiO2 catalyst with high NH3-SCR activity and stability[J]. Catal. Commun., 27, 97-100(2012).

    [27] HUANG X B, LIU L P, GAO H Y et al. Hierarchically nanostructured MnCo2O4 as active catalysts for the synthesis of N-benzylideneaniline from benzyl alcohol and aniline[J]. Green Chem., 19, 769-777(2017).

    [28] FRANCE L J, YANG Q, LI W et al. Ceria modified FeMnOx —Enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Appl. Catal. B-Environ., 206, 203-215(2017).

    [29] SUN M, LAN B, YU L et al. Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities[J]. Mater. Lett., 86, 18-20(2012).

    [30] HUANG X B, ZHENG H Y, LU G L et al. Enhanced water splitting electrocatalysis over MnCo2O4via introduction of suitable Ce content[J]. ACS Sustainable Chem. Eng., 7, 1169-1177(2019).

    [31] HUANG X B, WANG P, ZHANG H et al. CeO2-δ-modified CuFe2O4 with enhanced oxygen transfer as efficient catalysts for selective oxidation of fluorene under mild conditions[J]. Eur. J. Inorg. Chem., 2019, 91-97(2019).

    [32] XU L, LI X S, CROCKER M et al. A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2[J]. J. Mol. Catal. A-Chem., 378, 82-90(2013).

    Tools

    Get Citation

    Copy Citation Text

    Xiubing HUANG, Peng WANG, Jinzhang TAO, Zuoshuai XI. CeO2 Modified Mn-Fe-O Composites and their Catalytic Performance for NH3-SCR of NO[J]. Journal of Inorganic Materials, 2020, 35(5): 573

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH PAPER

    Received: May. 31, 2019

    Accepted: --

    Published Online: Mar. 1, 2021

    The Author Email:

    DOI:10.15541/jim20190266

    Topics