Journal of the Chinese Ceramic Society, Volume. 52, Issue 12, 3737(2024)
Preparation and Photocatalytic Properties of ZnO/Ag2MoO4 Composites
[2] [2] JOURSHABANI M, SHARIATINIA Z, BADIEI A. Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (g-C3N4) as efficient nanophotocatalysts under visible light irradiation[J]. J Colloid Interface Sci, 2017, 507: 59-73.
[3] [3] SHEN X F, YANG J Y, ZHENG T, et al. Plasmonic p-n heterojunction of Ag/Ag2S/Ag2MoO4 with enhanced vis-NIR photocatalytic activity for purifying wastewater[J]. Sep Purif Technol, 2020, 251: 117347.
[5] [5] VISHNEVETSKII D V, AVERKIN D V, EFIMOV A A, et al. Ag/-Ag2MoO4/h-MoO3 nanoparticle based microspheres: Synthesis and photosensitive properties[J]. Soft Matter, 2021, 17(46): 10416-10420.
[8] [8] FRAGA F C, DELLA ROCCA D G, JOS H J, et al. Evaluation of reactive oxygen species and photocatalytic degradation of ethylene using -Ag2MoO4/g-C3N4 composites[J]. J Photochem Photobiol A Chem, 2022, 432: 114102.
[9] [9] SINGH R P, MOURYA A K, KHAGAR P S, et al. Zero-valent silver decorated Ag2MoO4 nanorods: An excellent visible light active photocatalyst for persulfate ion activation with intrinsic bactericidal activity[J]. Inorg Chem Commun, 2023, 157: 111375.
[10] [10] SELVAM P P, RATHINAM V, ARUNRAJ A, et al. Synthesis effect of Mg-doped ZnO nanoparticles for visible light photocatalysis[J]. Ionics, 2023, 29(9): 3723-3729.
[11] [11] PATIL S S, CHELLACHAMY ANBALAGAN A, SUKHDEV A, et al. Facile one-pot synthesis of ternary Fe doped Cu-ZnO nanocatalyst: An efficient and recyclable solar light driven photocatalyst[J]. Surf Interfaces, 2024, 48: 104255.
[13] [13] KHEZAMI L, BESSADOK A, ALI BEN AISSA M, et al. Revolutionizing dye removal: g-C3N4-Modified ZnO nanocomposite for exceptional adsorption of basic fuchsin dye[J]. Inorg Chem Commun, 2024, 164: 112413.
[14] [14] JIN J, LIANG Q, SONG Y R, et al. Hydrothermal synthesis of g-C3N4/Ag2MoO4 nanocomposites for improved visible light photocatalytic performance[J]. J Alloys Compd, 2017, 726: 221-229.
[16] [16] MALATHI A, PRIYADHARSAN A, HANDAYANI M, et al. Boosted solar-driven photocatalysis: Silver molybdate/reduced graphene oxide nanocomposites for methylene blue decomposition[J]. Ionics, 2024, 30(3): 1603-1614.
[17] [17] BAI Y Y, LU Y, LIU J K. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite[J]. J Hazard Mater, 2016, 307: 26-35.
[18] [18] CUNHA F S, SCZANCOSKI J C, NOGUEIRA I C, et al. Structural, morphological and optical investigation of -Ag2MoO4 microcrystals obtained with different polar solvents[J]. CrystEngComm, 2015, 17(43): 8207-8211.
[19] [19] M S F, C V C, B S D, et al. Thermal decomposition synthesis of cylindrical rod-like MoO3 and irregular sphere-like Ag2MoO4 nanocrystals for accelerating photocatalytic degradation of industrial reactive dyes and biosensing application[J]. J Environ Chem Eng, 2023, 11(2): 109371.
[20] [20] CAO W R, AN Y T, CHEN L F, et al. Visible-light-driven Ag2MoO4/Ag3PO4 composites with enhanced photocatalytic activity[J]. J Alloys Compd, 2017, 701: 350-357.
[21] [21] MARIAPPAN A, MANNU P, THIRUPPATHIRAJA T, et al. Interfacial oxygen vacancy modulated ZIF-8-derived ZnO/CuS for the photocatalytic degradation of antibiotic and organic pollutants: DFT calculation and degradation pathways[J]. Chem Eng J, 2023, 476: 146720.
[22] [22] FOGAA L Z, VICENTINI J C M, DE FREITAS C F, et al. Nanocomposites of Nb2O5 and ZnO with reduced graphene oxide for heterogeneous photocatalysis of dyes[J]. Catal Commun, 2023, 185: 106799.
[23] [23] WU Y, XU F, GUO D F, et al. Synthesis of ZnO/CdSe hierarchical heterostructure with improved visible photocatalytic efficiency[J]. Appl Surf Sci, 2013, 274: 39-44.
[26] [26] YANG X L, WANG Y, XU X, et al. Surface plasmon resonance-induced visible-light photocatalytic performance of silver/silver molybdate composites[J]. Chin J Catal, 2017, 38(2): 260-269.
[27] [27] JIA Y C, TONG X, ZHANG J Z, et al. A facile synthesis of coral tubular g-C3N4 for photocatalytic degradation RhB and CO2 reduction[J]. J Alloys Compd, 2023, 965: 171432.
[28] [28] ARUMUGAM S, BAVANI T, MADHAVAN J, et al. Synthesis of a new FeMoO4/AgI nanocomposite for enhanced RhB degradation under visible light[J]. Chem Phys, 2024, 585: 112365.
[29] [29] JURADO A, VZQUEZ-SU E, PUJADES E. Urban groundwater contamination by non-steroidal anti-inflammatory drugs[J]. Water, 2021, 13(5): 720.
[30] [30] SHA S, VONG L B, CHONPATHOMPIKUNLERT, et al. Suppression of NSAID-induced small intestinal inflammation by orally administered redox nanoparticles[J]. Biomaterials, 2013, 34(33): 8393-8400.
[31] [31] ZHANG J, MA J Y, SUN X F, et al. Construction of Z-scheme Ag2MoO4/ZnWO4 heterojunctions for photocatalytically removing pollutants[J]. Langmuir, 2023: 2023, 39(3): 1159-1172.
[33] [33] DOU Y, YAN T, ZHANG Z, et al. Heterogeneous activation of peroxydisulfate by sulfur-doped g-C3N4 under visible-light irradiation: Implications for the degradation of spiramycin and an assessment of N-nitrosodimethylamine formation potential[J]. J Hazard Mater, 2021, 406: 124328.
Get Citation
Copy Citation Text
YANG Yuting, ZHANG Yingying, DONG Qingtong, CHEN Quanliang. Preparation and Photocatalytic Properties of ZnO/Ag2MoO4 Composites[J]. Journal of the Chinese Ceramic Society, 2024, 52(12): 3737
Category:
Received: Jun. 5, 2024
Accepted: Jan. 2, 2025
Published Online: Jan. 2, 2025
The Author Email: