Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 1066(2023)

Development on Thermal Stress Failure of Solid Oxide Fuel Cells

LI Qiangqiang1,*... MA Shuai2, LI Guojun2 and SUN Xiaoxia1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(98)

    [1] [1] BARELLI L, BIDINI G, GALLORINI F, et al. An energetic-exergetic comparison between PEMFC and SOFC-based micro-CHP systems[J]. Int J Hydrogen Energ, 2011, 36(4): 3206-3214.

    [2] [2] PAYNE R, LOVE J, KAH M. Generating electricity at 60% electrical efficiency from 1-2 kW SOFC products[J]. ECS Trans, 2009, 25(2): 231-239.

    [3] [3] PATEL H C, WOUDSTRA T, ARAVIND P V. Thermodynamic analysis of solid oxide fuel cell gas turbine systems operating with various biofuels[J]. Fuel Cells, 2012, 12(6): 1115-1128.

    [4] [4] ANDERSSON M, YUAN J L, SUNDEN B. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells[J]. Appl Energy, 2010, 87(5): 1461-1476.

    [5] [5] TIMURKUTLUK B, MAT M D. A review on micro-level modeling of solid oxide fuel cells[J]. Int J Hydrogen Energ, 2016, 41(23): 9968-9981.

    [6] [6] ADLER S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes[J]. Chem Rev, 2004, 104(10): 4791-4843.

    [7] [7] TARIQ F, KISHIMOTO M, YUFIT V, et al. 3D imaging and quantification of interfaces in SOFC anodes[J]. J Eur Ceram Soc, 2014, 34(15): 3755-3761.

    [8] [8] WHISTON M M, AZEVEDO I M L, LITSTER S, et al. Meeting U.S. solid oxide fuel cell targets[J]. Joule, 2019, 3(9): 2060-2065.

    [9] [9] LAI K, KOEPPEL B J, CHOI K S, et al. A quasi-two-dimensional electrochemistry modeling tool for planar solid oxide fuel cell stacks[J]. J Power Sources, 2011, 196(6): 3204-3222.

    [10] [10] KULIKOVSKY A A. Temperature and current distribution along the air channel in planar SOFC stack: Model and asymptotic solution[J]. J Fuel Cell Sci Tech, 2010, 7(1): 011015.

    [11] [11] PEKSEN M. A coupled 3D thermofluid-thermomechanical analysis of a planar type production scale SOFC stack[J]. Int J Hydrogen Energ, 2011, 36(18): 11914-11928.

    [12] [12] XU M, LI T, YANG M, et al. Solid oxide fuel cell interconnect design optimization considering the thermal stresses[J]. Sci Bull, 2016, 61(17): 1333-1344.

    [13] [13] ZHANG Z, YUE D, HE C, et al. Three-dimensional CFD modeling of transport phenomena in anode-supported planar SOFCs[J]. Heat Mass Transfer, 2013, 7(1): 1575-1586.

    [14] [14] XU Z, REN N, TANG M, et al. Numerical investigations for a solid oxide electrolyte cell stack[J]. Int J Hydrogen Energ, 2019, 44(38): 20997-21009.

    [15] [15] CHOUDHARY T. Computational analysis of IR-SOFC: Transient, thermal stress, carbon deposition and flow dependency[J]. Int J Hydrogen Energ, 2016, 41(24): 10212-10227.

    [16] [16] NAKAJO A, MUELLER F, BROUWER J, et al. Mechanical reliability and durability of SOFC stacks. Part I: Modelling of the effect of operating conditions and design alternatives on the reliability[J]. Int J Hydrogen Energ, 2012, 37(11): 9249-9268.

    [17] [17] NAKAJO A, WUILLEMIN Z, FAVRAT D. Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part I: Probability of failure of the cells[J]. J Power Sources, 2009, 193(1): 203-215.

    [18] [18] NAKAJO A, MUELLER F, BROUWER J, et al. Mechanical reliability and durability of SOFC stacks. Part II: Modelling of mechanical failures during ageing and cycling[J]. Int J Hydrogen Energ, 2012, 37(11): 9269-9286.

    [19] [19] KAUR G, PICKRELL G, CHENG Y. Thermal stress simulation and chemical compatibility of glass composite seals with YSZ for solid oxide fuel cells[J]. Int J Energ Res, 2015, 39(5): 681-695.

    [20] [20] WEI S S, WANG T H, WU J S. Numerical modeling of interconnect flow channel design and thermal stress analysis of a planar anode-supported solid oxide fuel cell stack[J]. Energy, 2014, 69: 553-561.

    [21] [21] WANG C, YANG J J, HUANG W, et al. Numerical simulation and analysis of thermal stress distributions for a planar solid oxide fuel cell stack with external manifold structure[J]. Int J Hydrogen Energ, 2018, 43(45): 20900-20910.

    [22] [22] PEKSEN M, AL-MASRI A, BLUM L, et al. 3D transient thermomechanical behaviour of a full scale SOFC short stack[J]. Int J Hydrogen Energ, 2013, 38(10): 4099-4107.

    [23] [23] LIN C K, HUANG L H, CHIANG L K, et al. Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design[J]. J Power Sources, 2009, 192(2): 515-524.

    [24] [24] PEKSEN M. 3D transient multiphysics modelling of a complete high temperature fuel cell system using coupled CFD and FEM[J]. Int J Hydrogen Energ, 2014, 39(10): 5137-5147.

    [25] [25] LI A, SONG C, LIN Z. A multiphysics fully coupled modeling tool for the design and operation analysis of planar solid oxide fuel cell stacks[J]. Appl Energ, 2017, 190: 1234-1244.

    [27] [27] LIN B, SHI Y X, CAI N S. Numerical simulation of cell-to-cell performance variation within a syngas-fuelled planar solid oxide fuel cell stack[J]. Appl Therm Eng, 2017, 114: 653-662.

    [28] [28] PEKSEN M. 3D thermomechanical behaviour of solid oxide fuel cells operating in different environments[J]. Int J Hydrogen Energ, 2013, 38(30): 13408-13418.

    [29] [29] PEKSEN M, BLUM L, STOLTEN D. Optimisation of a solid oxide fuel cell reformer using surrogate modelling, design of experiments and computational fluid dynamics[J]. Int J Hydrogen Energ, 2012, 37(17): 12540-12547.

    [30] [30] PEKSEN M, PETERS R, BLUM L, et al. Numerical modelling and experimental validation of a planar type pre-reformer in SOFC technology[J]. Int J Hydrogen Energ, 2009, 34(15): 6425-6436.

    [31] [31] PEKSEN M, PETERS R, BLUM L, et al. Hierarchical 3D multiphysics modelling in the design and optimisation of SOFC system components[J]. Int J Hydrogen Energ, 2011, 36(7): 4400-4408.

    [32] [32] PEKSEN M, PETERS R, BLUM L, et al. 3D coupled CFD/FEM modelling and experimental validation of a planar type air pre-heater used in SOFC technology[J]. Int J Hydrogen Energ, 2011, 36(11): 6851-6861.

    [33] [33] NAKAJO A, KUEBLER J, FAES A, et al. Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks. Constitutive materials of anode-supported cells[J]. Ceram Int, 2012, 38(5): 3907-3927.

    [35] [35] KONG W, ZHANG W X, ZHANG S D, et al. Residual stress analysis of a micro-tubular solid oxide fuel cell[J]. Int J Hydrogen Energ, 2016, 41(36): 16173-16180.

    [36] [36] SHAO Q, FERNANDEZ-GONZALEZ R, RUIZ-MORALES J C, et al. An advanced numerical model for energy conversion and crack growth predictions in solid oxide fuel cell units[J]. Int J Hydrogen Energ, 2015, 40(46): 16509-16520.

    [37] [37] LIU L, KIM G Y, CHANDRA A. Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions[J]. J Power Sources, 2010, 195(8): 2310-2318.

    [38] [38] BUSSO E P, TKACH Y, TRAVIS R P. Thermally induced failure of multilayer ceramic structures[J]. Philos Mag A, 2001, 81(8): 1979-1995.

    [39] [39] XIE J, HAO W, WANG F. The analysis of interfacial thermal stresses of solid oxide fuel cell applied for submarine power[J]. Int J Energ Res, 2018, 42(11): 2010-2020.

    [40] [40] PITAKTHAPANAPHONG S, BUSSO E P. Finite element analysis of the fracture behaviour of multi-layered systems used in solid oxide fuel cell applications[J]. Model Sim Mater Sc, 2005, 13(4): 531-540.

    [41] [41] YAKABE H, BABA Y, SAKURAI T, et al. Evaluation of the residual stress for anode-supported SOFCs[J]. J Power Sources, 2004, 135(1): 9-16.

    [42] [42] YAKABE H, BABA Y, SAKURAI T, et al. Evaluation of residual stresses in a SOFC stack[J]. J Power Sources, 2004, 131(1): 278-284.

    [43] [43] VILLANOVA J, SICARDY O, FORTUNIER R, et al. Determination of global and local residual stresses in SOFC by X-ray diffraction[J]. Nucl Instrum Meth B, 2010, 268(3-4): 282-286.

    [44] [44] SELCUK A, MERERE G, ATKINSON A. The influence of electrodes on the strength of planar zirconia solid oxide fuel cells[J]. J Mater Sci, 2001, 36(5): 1173-1182.

    [45] [45] LARA-CURZIO E, CAKMAK E, LIN L, et al. On the nonlinear temperature dependence of residual stresses in solid oxide fuel cells[J]. J Am Ceram Soc, 2011, 104(2): 1014-1022.

    [46] [46] LAURENCIN J, DELETTE G, LEFEBVRE-JOUD F, et al. A numerical tool to estimate SOFC mechanical degradation: Case of the planar cell configuration[J]. J Eur Ceram Soc, 2008, 28(9): 1857-1869.

    [47] [47] WANG B L, CUI Y J. Transient interlaminar thermal stress in multi-layered thermoelectric materials[J]. Appl Therm Eng, 2017, 119: 207-214.

    [48] [48] XIE J M, HAO W Q, WANG F H. Crack propagation of planar and corrugated solid oxide fuel cells during cooling process[J]. Int J Energ Res, 2019, 43(7): 3020-3027.

    [49] [49] LI Q, CAO G, ZHANG X, et al. Effects of non-planar interface and electrode parameters on the residual stress of solid oxide fuel cell[J]. Int J Energ Res, 2021, 45(2): 2432-2444.

    [50] [50] CASSIDY M, LINDSAY G, KENDALL K. The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes[J]. J Power Sources, 1996, 61(1-2): 189-192.

    [51] [51] FOUQUET D, MULLER A C, WEBER A, et al. Kinetics of oxidation and reduction of Ni/YSZ cermets[J]. Ionics, 2003, 9(1-2): 103-108.

    [52] [52] LAURENCIN J, DELETTE G, MOREL B, et al. Solid oxide fuel cells damage mechanisms due to Ni-YSZ re-oxidation: Case of the anode supported cell[J]. J Power Sources, 2009, 192(2): 344-352.

    [53] [53] HAUCH A, HAGEN A, HJELM J, et al. Sulfur poisoning of SOFC anodes: Effect of overpotential on long-term degradation[J]. J Electrochem Soc, 2014, 161(6): F734-F743.

    [54] [54] MURRAY E P, TSAI T, BARNETT S A. Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: An impedance spectroscopy study[J]. Solid State Ionics, 1998, 110(3-4): 235-243.

    [55] [55] NAKAJO A, VAN HERLE J, FAVRAT D. Sensitivity of stresses and failure mechanisms in SOFCs to the mechanical properties and geometry of the constitutive layers[J]. Fuel Cells, 2011, 11(4): 537-552.

    [56] [56] HEENAN T, ROBINSON J B, LU X, et al. Understanding the thermo-mechanical behaviour of solid oxide fuel cell anodes using synchrotron X-ray diffraction[J]. Solid State Ionics, 2018, 314: 156-164.

    [57] [57] RAJU K, KIM S, YU J H, et al. Rietveld refinement and estimation of residual stress in GDC-LSCF oxygen transport membrane ceramic composites[J]. Ceram Int, 2018, 44(9): 10293-10298.

    [58] [58] CHEN Z, WANG X, GIULIANI F, et al. Fracture toughness of porous material of LSCF in bulk and film forms[J]. J Am Ceram Soc, 2015, 98(7): 2183-2190.

    [59] [59] HUANG, KEQIN. Electrode performance test on single ceramic fuel cells using as electrolyte Sr- and Mg-doped LaGaO3[J]. J Electrochem Soc, 1997, 144(10): 3620.

    [60] [60] YOKOKAWA H, SAKAI N, HORITA T, et al. Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes[J]. J Alloy Compd, 2008, 452(1): 41-47.

    [61] [61] JANG I, KIM S, KIM C, et al. Interface engineering of yttrium stabilized zirconia/gadolinium doped ceria bi-layer electrolyte solid oxide fuel cell for boosting electrochemical performance[J]. J Power Sources, 2019, 435: 226776.

    [62] [62] SUN Y, HE S, SAUNDERS M, et al. A comparative study of surface segregation and interface of La0.6Sr0.4Co0.2Fe0.8O3-δ electrode on GDC and YSZ electrolytes of solid oxide fuel cells[J]. Int J Hydrogen Energ, 2021, 46(2): 2606-2616.

    [63] [63] KEANE M, MAHAPATRA M K, VERMA A, et al. LSM-YSZ interactions and anode delamination in solid oxide electrolysis cells[J]. Int J Hydrogen Energ, 2012, 37(22): 16776-16785.

    [64] [64] VIRKAR A V, NACHLAS J, JOSHI A V, et al. Internal precipitation of molecular oxygen and electromechanical failure of zirconia solid electrolytes[J]. J Am Ceram Soc, 1990, 73(11): 3382-3390.

    [65] [65] RALPH J, SCHOELER A, KRUMPELT M. Materials for lower temperature solid oxide fuel cells[J]. J Mater Sci, 2001, 36(5): 1161-1172.

    [66] [66] CLAUSEN C, BAGGER C, BILDE-SRENSEN J B, et al. Microstructural and microchemical characterization of the interface between La0.85Sr0.15MnO3 and Y2O3-stabilized ZrO2[J]. Solid State Ionics, 1994, 70-71(18): 59-64.

    [67] [67] HU B, KEANE M, MAHAPATRA M K, et al. Stability of strontium-doped lanthanum manganite cathode in humidified air[J]. J Power Sources, 2014, 248: 196-204.

    [68] [68] MAI A, HAANAPPEL V A, UHLENBRUCK S, et al. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: part I. variation of composition[J]. Solid State Ionics, 2005, 176(15-16): 1341-1350.

    [69] [69] YANG M, YAN A, ZHANG M, et al. Effects of GDC interlayer on performance of low-temperature SOFCs[J]. J Power Sources, 2008, 175(1): 345-352.

    [70] [70] LENSER C, ZHANG J, RUSSNER N, et al. Electro-chemo- mechanical analysis of a solid oxide cell based on doped ceria[J]. J Power Sources, 2022, 541: 231505.

    [71] [71] HENEKA M J, IVERS-TIFFEE E. Influence of high current cycling on the performance of SOFC single cells[J]. J Fuel Cell Sci Tech, 2012, 9(1): 1-6.

    [72] [72] KHAN M Z, MEHRAN M T, SONG R-H, et al. Effects of applied current density and thermal cycling on the degradation of a solid oxide fuel cell cathode[J]. Int J Hydrogen Energ, 2018, 43(27): 12346-12357.

    [73] [73] YOKOKAWA H, SUZUKI M, YODA M, et al. Achievements of NEDO durability projects on SOFC stacks in the light of physicochemical mechanisms[J]. Fuel Cells, 2019, 19(4): 311-339.

    [74] [74] LIU D J, ALMER J, CRUSE T. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high energy X-ray microbeam[J]. J Electrochem Soc, 2010, 157(5): B744-B750.

    [75] [75] ZHANG X, PARBEY J, YU G, et al. Thermal stress analysis of solid oxide fuel cells with chromium poisoning cathodes[J]. J Electrochem Soc, 2018, 165(14): F1224.

    [76] [76] XU Y, YU S, ZHANG Y, et al. Analysis of thermal stress in a solid oxide fuel cell due to the sulfur poisoning interface of the electrolyte and cathode[J]. Energ Fuels, 2021, 35(3): 2674-2682.

    [77] [77] PARK K, YU S, BAE J, et al. Fast performance degradation of SOFC caused by cathode delamination in long-term testing[J]. Int J Hydrogen Energ, 2010, 35(16): 8670-8677.

    [78] [78] CHINDA P, WECHSATOL W, CHANCHAONA S, et al. Microscale modeling of an anode-supported planar solid oxide fuel cell[J]. Fuel Cells, 2011, 11(2): 184-199.

    [79] [79] LI Q, LIANG L Y, GERDES K, et al. Phase-field modeling of three-phase electrode microstructures in solid oxide fuel cells[J]. Appl Phys Lett, 2012, 101(3): 033909.

    [80] [80] ABDELJAWAD F, VOLKER B, DAVIS R, et al. Connecting microstructural coarsening processes to electrochemical performance in solid oxide fuel cells: An integrated modeling approach[J]. J Power Sources, 2014, 250: 319-331.

    [81] [81] ANANDAKUMAR G, KIM J H. A thermomechanical fracture modeling and simulation for functionally graded solids using a residual-strain formulation[J]. Int J Fracture, 2010, 164(1): 31-55.

    [82] [82] JOULAEE N, MAKRADI A, AHZI S, et al. Prediction of crack propagation paths in the unit cell of SOFC stacks[J]. Int J Mech Mater Des, 2009, 5(3): 217-230.

    [83] [83] NGUYEN B N, KOEPPEL B J, AHZI S, et al. Crack growth in solid oxide fuel cell materials: From discrete to continuum damage modeling[J]. J Am Ceram Soc, 2006, 89(4): 1358-1368.

    [84] [84] MATSUDAIRA T, JANG B K, KIM S D, et al. Effect of water vapor on static fatigue behavior of a nickel/yttria-stabilized zirconia composite[J]. J Ceram Soc Jpn, 2017, 125(5): 416-418.

    [85] [85] KLEMENSO T, CHUNG C, LARSEN P H, et al. The mechanism behind redox instability of anodes in high-temperature SOFCs[J]. J Electrochem Soc, 2005, 152(11): A2186-A2192.

    [86] [86] GOUTIANOS S, FRANDSEN H L, SORENSEN B F. Fracture properties of nickel-based anodes for solid oxide fuel cells[J]. J Eur Ceram Soc, 2010, 30(15): 3173-3179.

    [87] [87] XUE Y J, HE C R, LIU M, et al. Effect of phase transformation of zirconia on the fracture behavior of electrolyte-supported solid oxide fuel cells[J]. Int J Hydrogen Energ, 2019, 44(23): 12118-12126.

    [88] [88] RADOVIC M, LARA-CURZIO E, NELSON G. Fracture toughness and slow crack growth behavior of Ni-YSZ and YSZ as a function of porosity and temperature[C]//30th International Conference and Exposition on Advanced Ceramics and Composites, 2006, 27: 373-381.

    [89] [89] CELIK S, IBRAHIMOGLU B, MAT M D, et al. Micro level two dimensional stress and thermal analysis anode/electrolyte interface of a solid oxide fuel cell[J]. Int J Hydrogen Energ, 2015, 40(24): 7895-7902.

    [90] [90] CLAGUE R, SHEARING P R, LEE P D, et al. Stress analysis of solid oxide fuel cell anode microstructure reconstructed from focused ion beam tomography[J]. J Power Sources, 2011, 196(21): 9018-9021.

    [91] [91] XIANG Y, DA Y L, ZHONG Z, et al. Thermo-mechanical stress analyses of solid oxide fuel cell anode based on three-dimensional microstructure reconstruction[J]. Int J Hydrogen Energ, 2020, 45(38): 19791-19800.

    [92] [92] YU X, ZHENG Z, ZHENJUN J. Thermo-mechanically coupled peridynamic modelling of fracture formation in solid oxide fuel cell anode[J]. ECS Trans, 2021, 103(1): 1011-1019.

    [93] [93] KWOK K, JRGENSEN P S, FRANDSEN H L. Computation of effective steady-state creep of porous Ni-YSZ composites with reconstructed microstructures[J]. J Am Ceram Soc, 2015, 98(9): 2873-2880.

    [94] [94] ABAZA A, MEILLE S, NAKAJO A, et al. Fracture of porous ceramics: Application to the mechanical degradation of solid oxide cell during redox cycling[J]. ECS Trans, 2021, 103(1): 1151-1163.

    [95] [95] LI Q, XUE D, FENG C, et al. Fracture simulation of Ni-YSZ anode microstructures of solid oxide fuel cells using phase field method[J]. J Electrochem Soc, 2022, 169(7): 073507.

    [96] [96] DELETTE G, LAURENCIN J, USSEGLIO-VIRETTA F, et al. Thermo-elastic properties of SOFC/SOEC electrode materials determined from three-dimensional microstructural reconstructions[J]. Int J Hydrogen Energ, 2013, 38(28): 12379-12391.

    [97] [97] VAIDYA S, KIM J H. Finite element thermal stress analysis of solid oxide fuel cell cathode microstructures[J]. J Power Sources, 2013, 225: 269-276.

    [98] [98] LIU Y L, HAGEN A, BARFOD R, et al. Microstructural studies on degradation of interface between LSM-YSZ cathode and YSZ electrolyte in SOFCs[J]. Solid State Ionics, 2009, 180(23-25): 1298-1304.

    [99] [99] ZHANG X, YU S, WANG M, et al. Thermal stress analysis at the interface of cathode and electrolyte in solid oxide fuel cells[J]. Int Commun Heat Mass, 2020, 118: 104831.

    [100] [100] JOO J H, JEONG J, KIM S Y, et al. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress[J]. J Power Sources, 2014, 247: 534-538.

    Tools

    Get Citation

    Copy Citation Text

    LI Qiangqiang, MA Shuai, LI Guojun, SUN Xiaoxia. Development on Thermal Stress Failure of Solid Oxide Fuel Cells[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 1066

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 25, 2022

    Accepted: --

    Published Online: Apr. 15, 2023

    The Author Email: Qiangqiang LI (liqiangqiang@stu.xjtu.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics