Journal of Innovative Optical Health Sciences, Volume. 17, Issue 1, 2330011(2024)

Single-cell manipulation by two-dimensional micropatterning

Xuehe Ma1, Haimei Zhang1, Shiyu Deng1, Qiushuo Sun1, Qingsong Hu1, Yuhang Pan1, Fen Hu1, Imshik Lee1, Fulin Xing1、*, and Leiting Pan1,2,3,4、**
Author Affiliations
  • 1The Key Laboratory of Weak-Light Nonlinear, Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, P. R. China
  • 2State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
  • 4Shenzhen Research Institute of Nankai University, Shenzhen, Guangdong 518083, P. R. China
  • show less
    References(133)

    [1] C. T. Leung, J. S. Brugge. Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature, 482, 410-413(2012).

    [2] S. L. Schuster, F. J. Segerer, F. A. Gegenfurtner et al. Contractility as a global regulator of cellular morphology, velocity, and directionality in low-adhesive fibrillary micro-environments. Biomaterials, 102, 137-147(2016).

    [3] L. Shang, F. Ye, M. Li et al. Spatial confinement toward creating artificial living systems. Chem. Soc. Rev., 51, 4075-4093(2022).

    [4] M. Ahmed, C. Ffrench-Constant. Extracellular matrix regulation of stem cell behavior. Curr. Stem Cell Rep., 2, 197-206(2016).

    [5] T. Wang, S. S. Nanda, G. C. Papaefthymiou et al. Mechanophysical cues in extracellular matrix regulation of cell behavior. ChemBioChem, 21, 1254-1264(2020).

    [6] M. C. Cramer, S. F. Badylak. Extracellular matrix-based biomaterials and their influence upon cell behavior. Ann. Biomed. Eng., 48, 2132-2153(2020).

    [7] C. Walker, E. Mojares, A. del Río Hernández. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci., 19, 3028(2018).

    [8] S. A. Gudipaty, J. Rosenblatt. Epithelial cell extrusion: Pathways and pathologies. Sem. Cell Develop. Biol., 67, 132-140(2017).

    [9] S. Okuda, K. Fujimoto. A mechanical instability in planar epithelial monolayers leads to cell extrusion. Biophys. J., 118, 2549-2560(2020).

    [10] Y. Yang, K. Wang, X. Gu et al. Biophysical regulation of cell behavior—Cross talk between substrate stiffness and nanotopography. Engineering, 3, 36-54(2017).

    [11] R. G. Wells. The role of matrix stiffness in regulating cell behavior. Hepatology, 47, 1394-1400(2008).

    [12] N. D. Leipzig, M. S. Shoichet. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials, 30, 6867-6878(2009).

    [13] K. Bera, A. Kiepas, I. Godet et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature, 611, 365-373(2022).

    [14] J. Gonzalez-Molina, X. Zhang, M. Borghesan et al. Extracellular fluid viscosity enhances liver cancer cell mechanosensing and migration. Biomaterials, 177, 113-124(2018).

    [15] M. Pittman, E. Iu, K. Li et al. Membrane ruffling is a mechanosensor of extracellular fluid viscosity. Nat. Phys., 18, 1112-1121(2022).

    [16] A. Kumar, J. K. Placone, A. J. Engler. Understanding the extracellular forces that determine cell fate and maintenance. Development, 144, 4261-4270(2017).

    [17] K. Goodwin, E. E. Lostchuck, K. M. L. Cramb et al. Cell–cell and cell–extracellular matrix adhesions cooperate to organize actomyosin networks and maintain force transmission during dorsal closure. Mol. Biol. Cell, 28, 1301-1310(2017).

    [18] I. A. Janson, A. J. Putnam. Extracellular matrix elasticity and topography: Material-based cues that affect cell function via conserved mechanisms. J. Biomed. Mater. Res. Part A, 103, 1246-1258(2015).

    [19] K. H. Nakayama, L. Hou, N. F. Huang. Role of extracellular matrix signaling cues in modulating cell fate commitment for cardiovascular tissue engineering. Adv. Healthcare Mater., 3, 628-641(2014).

    [20] H. J. Lee, N. Li, S. M. Evans et al. Biomechanical force in blood development: Extrinsic physical cues drive pro-hematopoietic signaling. Differentiation, 86, 92-103(2013).

    [21] Y. Li, M. Chen, J. Hu et al. Volumetric compression induces intracellular crowding to control intestinal organoid growth via Wnt/β-catenin signaling. Cell Stem Cell, 28, 63-78.e7(2021).

    [22] E. Gruber, C. Heyward, J. Cameron et al. Toll-like receptor signaling in macrophages is regulated by extracellular substrate stiffness and Rho-associated coiled-coil kinase (ROCK1/2). Int. Immunol., 30, 267-278(2018).

    [23] A. P. Quist, S. Oscarsson. Micropatterned surfaces: Techniques and applications in cell biology. Exp. Opin. Drug Discov., 5, 569-581(2010).

    [24] G. Blin. Quantitative developmental biology in vitro using micropatterning. Development, 148, dev186387(2021).

    [25] R. Link, K. Weißenbruch, M. Tanaka et al. Cell shape and forces in elastic and structured environments: From single cells to organoids. Adv. Funct. Mater., 2302145(2023).

    [26] I. Batalov, Q. Jallerat, S. Kim et al. Engineering aligned human cardiac muscle using developmentally inspired fibronectin micropatterns. Sci. Rep., 11, 1-14(2021).

    [27] N. R. M. Beijer, Z. M. Nauryzgaliyeva, E. M. Arteaga et al. Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns. Sci. Rep., 9, 1-14(2019).

    [28] S. Bang, K. S. Hwang, S. Jeong et al. Engineered neural circuits for modeling brain physiology and neuropathology. Acta Biomaterialia, 132, 379-400(2021).

    [29] E. Cimetta, S. Pizzato, S. Bollini et al. Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Biomed. Microdev., 11, 389-400(2009).

    [30] S. Kobel, M. P. Lutolf. High-throughput methods to define complex stem cell niches. Biotechniques, 48, ix-xxii(2010).

    [31] C. Moraes, G. H. Wang, Y. Sun et al. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials, 31, 577-584(2010).

    [32] U. Tuvshindorj, V. Trouillet, A. Vasilevich et al. The galapagos chip platform for high-throughput screening of cell adhesive chemical micropatterns. Small, 18, 2105704(2022).

    [33] P. Zapata, J. Su, A. J. García et al. Quantitative high-throughput screening of osteoblast attachment, spreading, and proliferation on demixed polymer blend micropatterns. Biomacromolecules, 8, 1907-1917(2007).

    [34] Q. Tseng, I. Wang, E. Duchemin-Pelletier et al. A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab on a Chip, 11, 2231-2240(2011).

    [35] W. Yang, Z. Wang, T. Yu et al. Recent advance in cell patterning techniques: Approaches, applications and future prospects. Sens. Actuat. A: Phys., 333, 113229(2022).

    [36] D. Falconnet, G. Csucs, H. M. Grandin et al. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials, 27, 3044-3063(2006).

    [37] G. Lee, S. B. Han, D. H. Kim. Cell-ECM contact-guided intracellular polarization is mediated via lamin A/C dependent nucleus-cytoskeletal connection. Biomaterials, 268, 120548(2021).

    [38] K. M. Yamada, M. Sixt. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol., 20, 738-752(2019).

    [39] L. I. U. Wen-Wen, C. Zhen-Ling, X. Y. Jiang. Methods for cell micropatterning on two-dimensional surfaces and their applications in biology. Chin. J. Anal. Chem., 37, 943-949(2009).

    [40] E. D’Arcangelo, A. P. McGuigan. Micropatterning strategies to engineer controlled cell and tissue architecture in vitro. Biotechniques, 58, 13-23(2015).

    [41] F. Brétagnol, O. Kylián, M. Hasiwa et al. Micro-patterned surfaces based on plasma modification of PEO-like coating for biological applications. Sens. Actuat. B: Chem., 123, 283-292(2007).

    [42] H. Wu, T. W. Odom, G. M. Whitesides. Reduction photolithography using microlens arrays: applications in gray scale photolithography. Anal. Chem., 74, 3267-3273(2002).

    [43] C. Y. Wu, H. Hsieh, Y. C. Lee. Contact photolithography at sub-micrometer scale using a soft photomask. Micromachines, 10, 547(2019).

    [44] D. H. Kang, H. N. Kim, P. Kim et al. Poly (ethylene glycol)(PEG) microwells in microfluidics: Fabrication methods and applications. Biochip J., 8, 241-253(2014).

    [45] L. Xu, J. Yang, B. Xue et al. Molecular insights for the biological interactions between polyethylene glycol and cells. Biomaterials, 147, 1-13(2017).

    [46] J. Zhu. Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials, 31, 4639-4656(2010).

    [47] P. Vermette, L. Meagher. Interactions of phospholipid-and poly (ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids Surfaces B: Biointerfaces, 28, 153-198(2003).

    [48] T. W. Herling, A. Levin, K. L. Saar et al. Microfluidic approaches for probing amyloid assembly and behaviour. Lab on a Chip, 18, 999-1016(2018).

    [49] A. Jaiswal, C. K. Rastogi, S. Rani et al. Two decades of two-photon lithography: Materials science perspective for additive manufacturing of 2D/3D nano-microstructures. Iscience, 26, 106374(2023).

    [50] G. Manessis, A. I. Gelasakis, I. Bossis. Point-of-care diagnostics for farm animal diseases: From biosensors to integrated lab-on-chip devices. Biosensors, 12, 455(2022).

    [51] D. Qin, Y. Xia, G. M. Whitesides. Soft lithography for micro-and nanoscale patterning. Nat. Protocols, 5, 491-503(2010).

    [52] E. Ferrari, F. Nebuloni, M. Rasponi et al. Photo and soft lithography for organ-on-chip applications. Organ-on-a-Chip: Meth. Protocols, 2373, 1-19(2022).

    [53] Y. Xia, G. M. Whitesides. Soft lithography. Ann. Rev. Mater. Sci., 28, 153-184(1998).

    [54] G. M. Whitesides, E. Ostuni, S. Takayama et al. Soft lithography in biology and biochemistry. Ann. Rev. Biomed. Eng., 3, 335-373(2001).

    [55] R. S. Kane, S. Takayama, E. Ostuni et al. Patterning proteins and cells using soft lithography. Biomaterials, 20, 2363-2376(1999).

    [56] M. Abdelgawad, M. W. L. Watson, E. W. K. Young et al. Soft lithography: masters on demand. Lab on a Chip, 8, 1379-1385(2008).

    [57] Y. Lin, C. Gao, R. Zhou et al. Soft lithography based on photolithography and two-photon polymerization. Microfluid. Nanofluid., 22, 1-11(2018).

    [58] N. Mohd Fuad, M. Carve, J. Kaslin et al. Characterization of 3D-printed moulds for soft lithography of millifluidic devices. Micromachines, 9, 116(2018).

    [59] L. Chang, R. D. Goldman. Intermediate filaments mediate cytoskeletal crosstalk. Nat. Rev. Mol. Cell Biol., 5, 601-613(2004).

    [60] H. Y. G. Lim, N. Plachta. Cytoskeletal control of early mammalian development. Nat. Rev. Mol. Cell Biol., 22, 548-562(2021).

    [61] R. Pinto-Costa, M. M. Sousa. Microtubules, actin and cytolinkers: How to connect cytoskeletons in the neuronal growth cone. Neurosci. Lett., 747, 135693(2021).

    [62] D. D. Tang, B. D. Gerlach. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Resp. Res., 18, 1-12(2017).

    [63] W. Ning, Y. Yu, H. Xu et al. The CAMSAP3-ACF7 complex couples noncentrosomal microtubules with actin filaments to coordinate their dynamics. Develop. Cell, 39, 61-74(2016).

    [64] R. Dominguez, K. C. Holmes. Actin structure and function. Ann. Rev. Biophys., 40, 169-186(2011).

    [65] T. Svitkina. The actin cytoskeleton and actin-based motility. Cold Spring Harbor Persp. Biol., 10, a018267(2018).

    [66] L. Blanchoin, R. Boujemaa-Paterski, C. Sykes et al. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev., 94, 235-263(2014).

    [67] L. Huang, Y. Peng, X. Tao et al. Microtubule organization is essential for maintaining cellular morphology and function. Oxid. Med. Cell. Longevity, 2022, 1623181(2022).

    [68] A. Akhmanova, L. C. Kapitein. Mechanisms of microtubule organization in differentiated animal cells. Nat. Rev. Mol. Cell Biol., 23, 541-558(2022).

    [69] S. A. Eldirany, I. B. Lomakin, M. Ho et al. Recent insight into intermediate filament structure. Curr. Opin. Cell Biol., 68, 132-143(2021).

    [70] S. Roy, A. Kapoor, F. Zhu et al. Artemisinins target the intermediate filament protein vimentin for human cytomegalovirus inhibition. J. Biol. Chem., 295, 15013-15028(2020).

    [71] D. T. Burnette, S. Manley, P. Sengupta et al. A role for actin arcs in the leading-edge advance of migrating cells. Nat. Cell Biol., 13, 371-382(2011).

    [72] M. Mavrakis, M. A. Juanes. The compass to follow: Focal adhesion turnover. Curr. Opin. Cell Biol., 80, 102152(2023).

    [73] S. Linder, P. Cervero, R. Eddy et al. Mechanisms and roles of podosomes and invadopodia. Nat. Rev. Mol. Cell Biol., 24, 86-106(2023).

    [74] Y. H. Tee, T. Shemesh, V. Thiagarajan et al. Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat. Cell Biol., 17, 445-457(2015).

    [75] Y. H. Tee, W. J. Goh, X. Yong et al. Actin polymerisation and crosslinking drive left-right asymmetry in single cell and cell collectives. Nat. Commun., 14, 776(2023).

    [76] F. Xing, H. Zhang, M. Li et al. Regulation of actin cytoskeleton via photolithographic micropatterning. J. Innov. Opt. Health Sci., 16, 2244005(2023).

    [77] E. Kassianidou, D. Probst, J. Jäger et al. Extracellular matrix geometry and initial adhesive position determine stress fiber network organization during cell spreading. Cell Rep., 27, 1897-1909.e4(2019).

    [78] K. Weißenbruch, J. Grewe, M. Hippler et al. Distinct roles of nonmuscle myosin II isoforms for establishing tension and elasticity during cell morphodynamics. Elife, 10, e71888(2021).

    [79] A. J. Jimenez, A. Schaeffer, C. De Pascalis et al. Acto-myosin network geometry defines centrosome position. Curr. Biol., 31, 1206-1220.e5(2021).

    [80] M. Burute, M. Prioux, G. Blin et al. Polarity reversal by centrosome repositioning primes cell scattering during epithelial-to-mesenchymal transition. Develop. Cell, 40, 168-184(2017).

    [81] S. H. Shabbir, M. M. Cleland, R. D. Goldman et al. Geometric control of vimentin intermediate filaments. Biomaterials, 35, 1359-1366(2014).

    [82] Y. Jiu, J. Lehtimäki, S. Tojkander et al. Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers. Cell Rep., 11, 1511-1518(2015).

    [83] S. Park, W. H. Jung, M. Pittman et al. The effects of stiffness, fluid viscosity, and geometry of microenvironment in homeostasis, aging, and diseases: A brief review. J. Biomech. Eng., 142, 100804(2020).

    [84] E. J. Campbell, P. Bagchi. A computational study of amoeboid motility in 3D: The role of extracellular matrix geometry, cell deformability, and cell–matrix adhesion. Biomech. Model. Mechanobiol., 20, 167-191(2021).

    [85] D. Mohammed, G. Charras, E. Vercruysse et al. Substrate area confinement is a key determinant of cell velocity in collective migration. Nat. Phys., 15, 858-866(2019).

    [86] X. Yao, J. Ding. Effects of microstripe geometry on guided cell migration. ACS Appl. Mater. Interfaces, 12, 27971-27983(2020).

    [87] C. Schreiber, B. Amiri, J. C. J. Heyn et al. On the adhesion–velocity relation and length adaptation of motile cells on stepped fibronectin lanes. Proc. Natl. Acad. Sci., 118, e2009959118(2021).

    [88] D. B. Brückner, A. Fink, C. Schreiber et al. Stochastic nonlinear dynamics of confined cell migration in two-state systems. Nat. Phys., 15, 595-601(2019).

    [89] F. Xing, S. Qu, J. Liu et al. Intercellular bridge mediates Ca2+ signals between micropatterned cells via IP3 and Ca2+ diffusion. Biophys. J., 118, 1196-1204(2020).

    [90] X. Jiang, D. A. Bruzewicz, A. P. Wong et al. Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci., 102, 975-978(2005).

    [91] W. Zheng, Y. Xie, K. Sun et al. An on-chip study on the influence of geometrical confinement and chemical gradient on cell polarity. Biomicrofluidics, 8, 052010(2014).

    [92] S. L. Vecchio, R. Thiagarajan, D. Caballero et al. Collective dynamics of focal adhesions regulate direction of cell motion. Cell Syst., 10, 535-542.e4(2020).

    [93] D. Garbett, A. Bisaria, C. Yang et al. T-Plastin reinforces membrane protrusions to bridge matrix gaps during cell migration. Nat. Commun., 11, 4818(2020).

    [94] F. Xing, H. Dong, J. Yang et al. Mesenchymal migration on adhesive–nonadhesive alternate surfaces in macrophages. Adv. Sci., 10, 2301337(2023).

    [95] F. J. Segerer, F. Thüroff, A. P. Alberola et al. Emergence and persistence of collective cell migration on small circular micropatterns. Phys. Rev. Lett., 114, 228102(2015).

    [96] S. Jain, V. M. L. Cachoux, G. H. N. S. Narayana et al. The role of single-cell mechanical behaviour and polarity in driving collective cell migration. Nat. Phys., 16, 802-809(2020).

    [97] T. Chen, A. Callan-Jones, E. Fedorov et al. Large-scale curvature sensing by directional actin flow drives cellular migration mode switching. Nat. Phys., 15, 393-402(2019).

    [98] M. A. P. Bray, W. J. Adams, N. A. Geisse et al. Nuclear morphology and deformation in engineered cardiac myocytes and tissues. Biomaterials, 31, 5143-5150(2010).

    [99] M. Versaevel, M. Riaz, T. Grevesse et al. Cell confinement: Putting the squeeze on the nucleus. Soft Matter, 9, 6665-6676(2013).

    [100] M. Ochsner, M. Textor, V. Vogel et al. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape. PloS One, 5, e9445(2010).

    [101] C. S. Chen, M. Mrksich, S. Huang et al. Geometric control of cell life and death. Science, 276, 1425-1428(1997).

    [102] F. Y. McWhorter, T. Wang, P. Nguyen et al. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci., 110, 17253-17258(2013).

    [103] N. Jain, V. Vogel. Spatial confinement downsizes the inflammatory response of macrophages. Nat. Mater., 17, 1134-1144(2018).

    [104] M. P. Prabhakaran, E. Vatankhah, D. Kai et al. Methods for nano/micropatterning of substrates: Toward stem cells differentiation. Int. J. Polym. Mater. Polym. Biomater., 64, 338-353(2015).

    [105] T. Nakamoto, X. Wang, N. Kawazoe et al. Influence of micropattern width on differentiation of human mesenchymal stem cells to vascular smooth muscle cells. Colloids Surfaces B: Biointerfaces, 122, 316-323(2014).

    [106] S. Joo, J. Yeon Kim, E. Lee et al. Effects of ECM protein micropatterns on the migration and differentiation of adult neural stem cells. Sci. Rep., 5, 13043(2015).

    [107] C. Y. Tay, H. Yu, M. Pal et al. Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage. Exp. Cell Res., 316, 1159-1168(2010).

    [108] J. Tang, R. Peng, J. Ding. The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces. Biomaterials, 31, 2470-2476(2010).

    [109] O. J. Pundel, L. M. Blowes, J. T. Connelly. Extracellular adhesive cues physically define nucleolar structure and function. Adv. Sci., 9, 2105545(2022).

    [110] Y. J. Liu, M. Le Berre, F. Lautenschlaeger et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell, 160, 659-672(2015).

    [111] A. J. Lomakin, C. J. Cattin, D. Cuvelier et al. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science, 370, eaba2894(2020).

    [112] V. Venturini, F. Pezzano, F. Catala Castro et al. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science, 370, eaba2644(2020).

    [113] M. Mittelbrunn, F. Sánchez-Madrid. Intercellular communication: Diverse structures for exchange of genetic information. Nat. Rev. Mol. Cell Biol., 13, 328-335(2012).

    [114] S. F. Mause, C. Weber. Microparticles: Protagonists of a novel communication network for intercellular information exchange. Circul. Res., 107, 1047-1057(2010).

    [115] X. W. Ng, Y. H. Chung, D. W. Piston. Intercellular communication in the islet of langerhans in health and disease. Compreh. Physiol., 11, 2191(2021).

    [116] R. Isaac, F. C. G. Reis, W. Ying et al. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metabol., 33, 1744-1762(2021).

    [117] G. Camussi, M. C. Deregibus, V. Cantaluppi. Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem. Soc. Trans., 41, 283-287(2013).

    [118] M. Z. Totland, N. L. Rasmussen, L. M. Knudsen et al. Regulation of gap junction intercellular communication by connexin ubiquitination: Physiological and pathophysiological implications. Cell. Mol. Life Sci., 77, 573-591(2020).

    [119] H. T. Le, W. C. Sin, S. Lozinsky et al. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress. J. Biol. Chem., 289, 1345-1354(2014).

    [120] C. Georgikou, L. Yin, J. Gladkich et al. Inhibition of miR30a-3p by sulforaphane enhances gap junction intercellular communication in pancreatic cancer. Cancer Lett., 469, 238-245(2020).

    [121] C. Zurzolo. Tunneling nanotubes: Reshaping connectivity. Curr. Opin. Cell Biol., 71, 139-147(2021).

    [122] M. Guescini, G. Leo, S. Genedani et al. Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. Exp. Cell Res., 318, 603-613(2012).

    [123] S. Kimura, K. Hase, H. Ohno. Tunneling nanotubes: Emerging view of their molecular components and formation mechanisms. Exp. Cell Res., 318, 1699-1706(2012).

    [124] L. Leybaert, M. J. Sanderson. Intercellular Ca2+ waves: mechanisms and function. Physiol. Rev., 92, 1359-1392(2012).

    [125] C. M. Wang, C. Ploia, F. Anselmi et al. Adenosine triphosphate acts as a paracrine signaling molecule to reduce the motility of T cells. The EMBO J., 33, 1354-1364(2014).

    [126] C. B. Tabi, I. Maïna, A. Mohamadou et al. Long-range intercellular Ca2+ wave patterns. Physica A: Statist. Mech. Appl., 435, 1-14(2015).

    [127] S. E. Stasiak, R. R. Jamieson, J. Bouffard et al. Intercellular communication controls agonist-induced calcium oscillations independently of gap junctions in smooth muscle cells. Sci. Adv., 6, eaba1149(2020).

    [128] E. Decrock, M. Vinken, M. Bol et al. Calcium and connexin-based intercellular communication, a deadly catch?. Cell Calcium, 50, 310-321(2011).

    [129] T. Nakano, Y. H. Hsu, W. C. Tang et al. Microplatform for intercellular communication. 2008 3rd IEEE Int. Conf. Nano/Micro Engineered and Molecular Systems, 476-479(2008).

    [130] M. R. Salick, B. N. Napiwocki, J. Sha et al. Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes. Biomaterials, 35, 4454-4464(2014).

    [131] F. Xing, P. Zhang, P. Jiang et al. Spatiotemporal characteristics of intercellular calcium wave communication in micropatterned assemblies of single cells. ACS Appl. Mater. Interfaces, 10, 2937-2945(2018).

    [132] X. E. Guo, E. Takai, X. Jiang et al. Intracellular calcium waves in bone cell networks under single cell nanoindentation. Mol. Cell. Biomech., 3, 95(2006).

    [133] X. L. Lu, B. Huo, V. Chiang et al. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J. Bone Min. Res., 27, 563-574(2012).

    Tools

    Get Citation

    Copy Citation Text

    Xuehe Ma, Haimei Zhang, Shiyu Deng, Qiushuo Sun, Qingsong Hu, Yuhang Pan, Fen Hu, Imshik Lee, Fulin Xing, Leiting Pan. Single-cell manipulation by two-dimensional micropatterning[J]. Journal of Innovative Optical Health Sciences, 2024, 17(1): 2330011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 26, 2023

    Accepted: Nov. 29, 2023

    Published Online: Feb. 28, 2024

    The Author Email: Xing Fulin (xingfulin@nankai.edu.cn), Pan Leiting (plt@nankai.edu.cn)

    DOI:10.1142/S1793545823300112

    Topics