Optics and Precision Engineering, Volume. 28, Issue 12, 2665(2020)
IN FNet: D eep in stance featu re ch ain learning netw ork for pan op tic segm en tation
[1] [1] HE K, GKIOXARI G, DOLLAR P, et al.. Mask R-CNN[C]. IEEE International Conference on Computer Vision. Piscataway, USA: IEEE, 2017: 2980-2988.
[2] [2] HE K, ZHANG X, REN S, et al.. Deep Residual Learning for Image Recognition[C]. IEEE Confer. ence on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2016: 770-778.
[3] [3] KIRILLOV A, GIRSHICK R, HE K, et al.. Pan. optic Feature Pyramid Networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recog. nition. Piscataway, USA: IEEE, 2019: 6392-6401.
[4] [4] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2015: 3431-3440.
[5] [5] CHEN LC, GEORGE PAPANDREOU, IASO. NAS KOKKINOS, et al.. DeepLab: Semantic im. age segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Ma. chine Intelligence, 2018, 40(4): 834-848.
[8] [8] XIONG Y, LIAO R, ZHAO H, et al.. UPSNet: A Unified Panoptic Segmentation Network[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2019: 8810-8818.
[9] [9] LIU H, PENG C, YU C, et al. An End-To-End Network for Panoptic Segmentation[C]. IEEE/ CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2019: 6165-6174.
[10] [10] LI J, RAVENTOS A, BHARGAVA A, et al.. Learning to fuse things and stuff[J]. arXiv pre. print arXiv: 1812. 01192v2.
[11] [11] LI Y, CHEN X, ZHU Z, et al.. Attention-Guid. ed Unified Network for Panoptic Segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2019: 7019-7028.
[12] [12] ZEILER M D, FERGUS R. Visualizing and Un. derstanding Convolutional Neural Networks[C]. European Conference on Computer Vision. Ber. lin, Germany: Srpringer, 2014: 818-833.
[13] [13] TAN M, LE Q V. EfficientNet: Rethinking mod. el scaling for convolutional neural networks[C]. In. ternational Conference on Machine Learning, 2019: 6105-6114.
[14] [14] RIPLEY B D. Pattern Recognition and Neural Networks[M]. Cambridge, UK: Cambridge uni. versity press, 1996.
[15] [15] NAIR V, HINTON G E. Rectified Linear Units Improve Restricted Boltzmann Machines[C]. In. ternational Conference on Machine Learning, 2010: 807-814.
[16] [16] LIN T Y, MAIRE M, ELONGIE SB, et al.. Microsoft COCO: Common Objects in Context[C]. European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 740-755.
[17] [17] CORDTS M, OMRAN M, RANOS S, et al.. The Cityscapes Dataset for Semantic Urban Scene Understanding[C]. IEEE Conference on Comput. er Vision and Pattern Recognition. Piscataway, USA: IEEE, 2016: 3213-3223.
[21] [21] YANG T J, COLLINS M D, ZHU Y, et al.. DeeperLab: Single-shot image parser[J]. arXiv preprint arXiv: 1902. 05093v2.
Get Citation
Copy Citation Text
MAO Lin, REN Feng-zhi*, YANG Da-wei, ZHANG Ru-bo. IN FNet: D eep in stance featu re ch ain learning netw ork for pan op tic segm en tation[J]. Optics and Precision Engineering, 2020, 28(12): 2665
Category:
Received: Apr. 17, 2020
Accepted: --
Published Online: Jan. 19, 2021
The Author Email: Feng-zhi* REN (renfz2019@163.cn)