Journal of Advanced Dielectrics, Volume. 14, Issue 5, 2350028(2024)
CuO:V2O5 driven alterations in dielectric, ferroelectric and structural properties of Barium Zirconate Titanate ceramics
[1] E. Hollenstein, M. Davis, D. Damjanovic, N. Setter. Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett., 87, 182905(2005).
[2] H. Jaffe. Piezoelectric ceramics. J. Am. Ceram. Soc., 41, 494(1958).
[3] F. Du et al. Preparation and characterization of monodisperse Ag nanoparticles doped barium titanate ceramics. J. Alloys Compd., 478, 620(2009).
[4] T. Badapanda, S. Sarangi, B. Behera, S. Anwar. Structural and impedance spectroscopy study of Samarium modified Barium Zirconium Titanate ceramic prepared by mechanochemical route. Curr. Appl. Phys., 14, 1192(2014).
[5] B. Cui, P. Yu, J. Tian, Z. Chang. Preparation and characterization of Co-doped BaTiO3 nanosized powders and ceramics. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 133, 205(2006).
[6] H. Sun et al. Effects of CuO additive on structure and electrical properties of low-temperature sintered Ba0.98Ca0.02Zr0.02Ti0.98O3 lead-free ceramics. Ceram. Int., 41, 555(2015).
[7] B. W. Lee, S. B. Cho. Preparation of BaZrxTi1-xO3 by the hydrothermal process from peroxo-precursors. J. Eur. Ceram. Soc., 25, 2009(2005).
[8] A. Outzourhit et al. Characterization of hydrothermally prepared BaTi1-xZrxO3. J. Alloys Compd., 340, 214(2002).
[9] T. Badapanda et al. Structural refinement, optical and ferroelectric properties of microcrystalline Ba(Zr0.05Ti0.95)O3 perovskite. Curr. Appl. Phys., 14, 708(2014).
[10] H. Feng et al. Structure, dielectric and electrical properties of cerium doped barium zirconium titanate ceramics. J. Alloys Compd., 512, 12(2012).
[11] M. L. V. Mahesh, V. V. Bhanu Prasad, A. R. James. Enhanced dielectric and ferroelectric properties of lead-free Ba(Zr0.15Ti0.85)O3 ceramics compacted by cold isostatic pressing. J. Alloys Compd., 611, 43(2014).
[12] M. R. Panigrahi, S. Panigrahi. Structural analysis of 100% relative intense peak of Ba1-xCaxTiO3 ceramics by X-ray powder diffraction method. Phys. B Condens. Matter., 405, 1787(2010).
[13] R. C. Pullar et al. Dielectric measurements on a novel Ba1-xCaxTiO3 (BCT) bulk ceramic combinatorial library. J. Electroceramics, 22, 245(2009).
[14] H. Nam et al. Influence of quenching temperature on piezoelectric and ferroelectrics properties in BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 ceramics. Ceram. Int., 44, S199(2018).
[15] G. P. Khanal et al. Effect of thermal annealing on crystal structures and electrical properties in BaTiO3 ceramics. J. Appl. Phys., 124, 034102(2018).
[16] M. Aggarwal et al. Microstructural tuning: A route towards realization of enhanced pyroelectric figure of merits of Sr and Zr doped barium titanate ceramics. Mater. Today Commun., 31, 103302(2022).
[17] A. S. Priya, I. B. S. Banu, D. Geetha, S. Sankar. Investigations of the magnetic and dielectric behaviour of (Zr, Cu) co-doped BiFeO3-BaTiO3 composite. Mater. Res. Express, 6, 106116(2019).
[18] X. Cheng, M. Shen. Enhanced spontaneous polarization in Sr and Ca co-doped BaTiO3 ceramics. Solid State Commun., 141, 587(2007).
[19] X. Jiang et al. Structure and enhanced dielectric temperature stability of BaTiO3-based ceramics by Ca ion B site-doping. J. Mater., 7, 295(2021).
[20] A. Jain, A. K. Panwar. Synergetic effect of rare-earths doping on the microstructural and electrical properties of Sr and Ca co-doped BaTiO3 nanoparticles. Ceram. Int., 46, 10270(2020).
[21] M. Aghayan, A. K. Zak, M. Behdani, A. M. Hashim. Sol-gel combustion synthesis of Zr-doped BaTiO3 nanopowders and ceramics: Dielectric and ferroelectric studies. Ceram. Int., 40, 16141(2014).
[22] Z. Yu, C. Ang, R. Guo, A. S. Bhalla. Dielectric properties and high tunability of Ba(Ti0.7Zr0.3)O3 ceramics under dc electric field. Appl. Phys. Lett., 81, 1285(2002).
[23] Z. Chen, J. Hu. Piezoelectric and dielectric properties of (Bi0.5Na0.5)0.94Ba0.06TiO3-Ba(Zr0.04Ti0.96)O3 lead-free piezoelectric ceramics. Ceram. Int., 35, 111(2009).
[24] P. Zheng et al. Piezoelectric properties and stabilities of CuO-modified Ba (Ti,Zr)O3 ceramics. Appl. Phys. Lett., 94, 2007(2009).
[25] W. Kang et al. Effect of doping Gd2O3 on dielectric and piezoelectric properties of BaZr0.1Ti0.9O3 ceramics by sol–gel method. J. Mater. Sci. Mater. Electron., 30, 2743(2019).
[26] K. M. Sangwan et al. Improved dielectric and ferroelectric properties of Mn doped barium zirconium titanate (BZT) ceramics for energy storage applications. J. Phys. Chem. Solids, 117, 158(2018).
[27] F. Moura et al. Ferroelectric and dielectric properties of vanadium-doped Ba(Ti0.90Zr0.10)O3 ceramics. J. Alloys Compd., 466, 16(2008).
[28] W. Cai, C. Fu, Z. Lin, X. Deng. Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics. Ceram. Int., 37, 3643(2011).
[29] U. S. Shenoy, D. K. Bhat. Vanadium-doped BaTiO3 as high-performance thermoelectric material: role of electronic structure engineering. Mater. Today Chem., 18, 100384(2020).
[30] R. Verma et al. Structural, optical, and electrical properties of vanadium-doped, lead-free BCZT ceramics. J. Alloys Compd., 869, 159520(2021).
[31] A. Hanumaiah et al. Dielectric measurements in vanadium doped barium titanate. Bull. Mater. Sci., 18, 93(1995).
[32] L. Liu et al. Frequency and temperature dependent dielectric and conductivity behavior of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 ceramic. Mater. Chem. Phys., 126, 769(2011).
[33] F. G. Garcia et al. Dielectric properties of vanadium and tungsten doped barium zirconium titanate/epoxy composites. Acta Eng., 1, 24(2013).
[34] P. Dulian, W. Ba¸k, K. Wieczorek-Ciurowa, C. Kajtoch. Dielectric properties of vanadium doped barium titanate synthesized via high-energy ball milling. Mater. Sci., 32, 257(2014).
[35] A. Jain et al. Microstructural and dielectric investigations of vanadium substituted barium titanate ceramics. Adv. Mater. Lett., 7, 567(2016).
[36] Y. Yang et al. Effects of V2O5 doping on the structure and electrical properties of BCZT lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron., 30, 2854(2019).
[37] R. Chandran, C. O. Sreekala, S. K. Menon. BaTiO3/V2O5 composite based cylindrical dielectric resonator antenna for X-band applications. Mater. Today Proc., 33, 1367(2019).
[38] A. Shukla, R. N. P. Choudhary, A. K. Thakur, D. K. Pradhan. Structural, microstructural and electrical studies of La and Cu doped BaTiO3 ceramics. Phys. B Condens. Matter., 405, 99(2010).
[39] A. Outzourhit et al. Dielectric characterization of hydrothermally prepared (Cu,Sb)-doped BaTi1-xZrxO3. Moroccan Stat. Phys. Condens. Matter Soc., 8, 83(2007).
[40] A. S. Lather et al. Assessment of conductivity through impedance analysis of CuO:Ho2O3 modified BaZr0.05Ti0.95O3. ECS J. Solid State Sci. Technol., 12, 093013(2023).
[41] L. A. Xue, Y. Chen, R. J. Brook. The effect of lanthanide contraction on grain growth in lanthanide-doped BaTiO3. J. Mater. Sci. Lett., 7, 1163(1988).
[42] W. Cannon, J. Morris, K. Mikeska, J. Blum, W. Cannon. Multilayer Ceramic Devices, Advances in Ceramics(1986).
[43] F. D. Morrison, D. C. Sinclair, A. R. West. Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. J. Appl. Phys., 86, 6355(1999).
[44] J. H. Hwang, Y. H. Han. Dielectric properties of erbium doped barium titanate, 40, 676(2001).
[45] Y. Pu, W. Chen, S. Chen, H. T. Langhammer. Microstructure and dielectric properties of dysprosium-doped barium titanate ceramics. Ceramica, 51, 214(2005).
[46] Y. Wang, L. Li, J. Qi, Z. Gui. Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics. Ceram. Int., 28, 657(2002).
[47] N. Ding et al. Effect of Zr/Ti ratio on the dielectric and piezoelectric properties of Mn-doped Ba(Zr, Ti)O3 ceramics. J. Mater. Sci. Mater. Electron., 25, 2305(2014).
[48] S. Devi, A. K. Jha. Phase transitions and electrical characteristics of tungsten substituted barium titanate. Phys. B Condens. Matter, 404, 4290(2009).
[49] S. J. Chang et al. An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability. J. Colloid Interface Sci., 329, 300(2009).
[50] M. Wang, R. Zuo, S. Qi, L. Liu. Synthesis and Characterization of sol-gel derived (Ba,Ca)(Ti,Zr)O3 nanoparticles. Nature, 388, 539(1997).
[51] S. R. Teeparthi, E. W. Awin, R. Kumar. Dominating role of crystal structure over defect chemistry in black and white zirconia on visible light photocatalytic activity. Sci. Rep., 8, 1(2018).
[52] M. H. Zare, A. M. Zeinabad. Photocatalytic activity of ZrO2/TiO2/Fe3O4 ternary nanocomposite for the degradation of naproxen: Characterization and optimization using response surface methodology. Sci. Rep., 12, 10388(2022).
[53] L. S. Cavalcante et al. Microstructure, dielectric properties and optical band gap control on the photoluminescence behavior of Ba[Zr0.25Ti0.75]O3 thin films. J. Sol-Gel Sci. Technol., 49, 35(2009).
[54] N. Chakrabarti, H. S. Maiti. Chemical synthesis of barium zirconate titanate powder by an autocombustion technique. J. Mater. Chem., 6, 1169(1996).
[55] R. E. Cohen. Origin of ferroelectricity in perovskite oxides. Nature, 358, 136(1992).
[56] C. G. F. Stenger, A. J. Burggraaf. Study of phase transitions and properties of tetragonal (Pb,La)(Zr,Ti)O3 ceramics II. J. Phys. Chem. Solids, 41, 25(1980).
[57] A. S. Kumar et al. Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3–CoFe2O4 core–shell nanocomposite. J. Magn. Magn. Mater., 418, 294(2016).
[58] Z. Yu, R. Guo, A. S. Bhalla. Dielectric behavior of Ba(Ti1-xZrx)O3 single crystals. J. Appl. Phys., 88, 410(2000).
[59] T. Badapanda, S. Sarangi, B. Behera, S. Anwar. Structural and impedance spectroscopy study of Samarium modified Barium Zirconium Titanate ceramic prepared by mechanochemical route. Curr. Appl. Phys., 14, 1192(2014).
[60] S. Rani et al. Structural investigation and giant dielectric response of — CaCu3Ti4O12 ceramic by Nd/Zr co-doping for energy storage applications. J. Mater. Sci. Mater. Electron., 29, 10825(2018).
[61] H. S. Mohanty et al. Impedance spectroscopic study on microwave sintered (1-x)Na0.5Bi0.5TiO3–xBaTiO3 ceramics. J. Mater. Sci. Mater. Electron., 29, 6966(2018).
[62] J. Liu et al. Dielectric properties and Maxwell–Wagner relaxation of compounds ACu3Ti4O12 (A=Ca,Bi2/3,Y2/3,La2/3). J. Appl. Phys., 98, 1(2005).
[63] S. Sen, R. N. Choudhary. Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys., 87, 256(2004).
[64] U. Dash et al. Electrical properties of bulk and nano Li2TiO3 ceramics: A comparative study. J. Adv. Ceram., 3, 89(2014).
[65] B. Tiwari, R. N. P. Choudhary. Study of impedance parameters of cerium modified lead zirconate titanate ceramics. IEEE Trans. Dielectr. Electr. Insul., 17, 5(2010).
[66] S. Kaur et al. Hopping mechanism and impedance properties of Mg-doped NBT-KBT solid solution near ambient temperature. ECS J. Solid State Sci. Technol., 11, 103010(2022).
[67] Y. M. Li, R. H. Liao, X. P. Jiang, Y. P. Zhang. Impedance spectroscopy and dielectric properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 ceramics. J. Alloys Compd., 484, 961(2009).
[68] R. Ranjan, R. Kumar, B. Behera, R. N. P. Choudhary. Structural and impedance spectroscopic studies of samarium modified lead zirconate titanate ceramics. Phys. B Phys. Condens. Matter, 404, 3709(2009).
[69] M. R. Biswal et al. Dielectric and impedance spectroscopic studies of multiferroic BiFe1-xNixO3. Adv. Mater. Lett., 5, 531(2014).
[70] C. G. Koops. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev., 83, 121(1951).
[71] J. C. Maxwell. Maxwell Treatise Preface(1873).
[72] P. R. Mason, J. B. Hasted, L. Moore. The use of statistical theory in fitting equations to dielectric dispersion data. Adv. Mol. Relax. Process., 6, 217(1974).
[73] S. Havriliak, S. Negami. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer (Guildf), 8, 161(1967).
[74] T. Nakamura, K. Homma, K. Tachibana. Impedance spectroscopy of manganite films prepared by metalorganic chemical vapor deposition. J. Nanosci. Nanotechnol., 11, 8408(2011).
[75] P. S. Das, P. K. Chakraborty, B. Behera, R. N. P. Choudhary. Electrical properties of Li2BiV5O15 ceramics. Phys. B Condens. Matter, 395, 98(2007).
[76] T. Badapanda, S. Sarangi, B. Behera, S. Anwar. Structural and impedance spectroscopy study of Samarium modified Barium Zirconium Titanate ceramic prepared by mechanochemical route. Curr. Appl. Phys., 14, 1192(2014).
[77] Priyanka, A. K. Jha. Electrical characterization of zirconium substituted barium titanate using complex impedance spectroscopy. Bull. Mater. Sci., 36, 135(2013).
[78] A. Shukla, R. N. P. Choudhary. High-temperature impedance and modulus spectroscopy characterization of La3/Mn4 modified PbTiO3 nanoceramics. Phys. B Condens. Matter, 406, 2492(2011).
[79] A. K. Behera et al. Investigation of complex impedance and modulus properties of Nd doped 0.5BiFeO3-0.5PbTiO3 multiferroic composites. Cent. Eur. J. Phys., 12, 851(2014).
[80] R. Bergman. General susceptibility functions for relaxations in disordered systems. J. Appl. Phys., 88, 1356(2000).
[81] N. Ortega et al. Impedance spectroscopy of multiferroic PbZrxTi1-xO3/CoFe2O4 layered thin films. Phys. Rev. B — Condens. Matter Mater. Phys., 77, 1(2008).
[82] V. Prakash, S. N. Choudhary, T. P. Sinha. Dielectric relaxation in complex perovskite oxide BaCo1/2W1/2O3. Phys. B, 403, 103(2008).
[83] A. K. Jonscher. The “universal” dielectric response. Nature, 267, 673(1977).
[84] D. K. Pradhan, B. Behera, P. R. Das. Studies of dielectric and electrical properties of a new type of complex tungsten bronze electroceramics. J. Mater. Electron., 23, 779(2012).
[85] S. Pattanayak, R. N. P. Choudhary, P. R. Das. Effect of Gd-substitution on phase transition and conduction mechanism of BiFeO3. J. Mater. Electron., 24, 2767(2013).
[86] G. Catalan, J. F. Scott. Physics and application of bismuth ferrite. Adv. Mater., 21, 2463(2009).
[87] S. Husain et al. Study of structural and electronic transport properties of Ce-doped LaMnO3. Pramana — J. Phys., 58, 1045(2002).
[88] R. N. P. Choudhary et al. Effect of La substitution on structural and electrical properties of Ba(Fe2/3W1/3)O3 nanoceramics. J. Mater. Sci., 42, 7423(2007).
Get Citation
Copy Citation Text
Aryan Singh Lather, Kanika Poonia, R. S. Kundu, Neetu Ahlawat, Anuj Nehra, Shubhpreet Kaur. CuO:V2O5 driven alterations in dielectric, ferroelectric and structural properties of Barium Zirconate Titanate ceramics[J]. Journal of Advanced Dielectrics, 2024, 14(5): 2350028
Category: Research Articles
Received: Oct. 5, 2023
Accepted: Nov. 29, 2023
Published Online: Jan. 2, 2025
The Author Email: Lather Aryan Singh (aryansinghlather@gmail.com)