Acta Optica Sinica, Volume. 42, Issue 21, 2126004(2022)

Phase Modulation Mechanism and Research Progress of Multifunctional Metasurfaces

Mengjiao Liu, Tianyue Li, Qin Ge, Shuming Wang*, Zhenlin Wang, and Shining Zhu
Author Affiliations
  • National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, Jiangsu , China
  • show less
    References(69)

    [1] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [2] Chen X Z, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).

    [3] Chen X Z, Chen M, Mehmood M Q et al. Longitudinal multifoci metalens for circularly polarized light[J]. Advanced Optical Materials, 3, 1201-1206(2015).

    [4] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [5] Chen B H, Wu P C, Su V C et al. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 17, 6345-6352(2017).

    [6] Fan Q B, Wang Y L, Liu M Z et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light[J]. Optics Letters, 43, 6005-6008(2018).

    [7] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [8] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [9] Ni X J, Wong Z J, Mrejen M et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 349, 1310-1314(2015).

    [10] Li L, Liu Z X, Ren X F et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 368, 1487-1490(2020).

    [11] Bao Y J, Lin Q L, Su R B et al. On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface[J]. Science Advances, 6, eaba8761(2020).

    [12] Nazemosadat E, Mazur M, Kruk S et al. Dielectric broadband metasurfaces for fiber mode-multiplexed communications[J]. Advanced Optical Materials, 7, 1801679(2019).

    [13] Balthasar Mueller J P, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [14] Khorasaninejad M, Zhu A Y, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 16, 7229-7234(2016).

    [15] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [16] Arbabi E, Kamali S M, Arbabi A et al. Full-stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 5, 3132-3140(2018).

    [17] Deng L G, Deng J, Guan Z Q et al. Malus-metasurface-assisted polarization multiplexing[J]. Light: Science & Applications, 9, 101(2020).

    [18] Devlin R C, Ambrosio A, Rubin N A et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 358, 896-901(2017).

    [19] Fan Q B, Zhu W Q, Liang Y Z et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible[J]. Nano Letters, 19, 1158-1165(2019).

    [20] Hu Y Q, Li L, Wang Y J et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Letters, 20, 994-1002(2020).

    [21] Huo P C, Zhang C, Zhu W Q et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Letters, 20, 2791-2798(2020).

    [22] Jang J, Lee G Y, Sung J et al. Independent multichannel wavefront modulation for angle multiplexed meta-holograms[J]. Advanced Optical Materials, 9, 2100678(2021).

    [23] Jin R C, Tang L L, Li J Q et al. Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin Hall effect[J]. ACS Photonics, 7, 512-518(2020).

    [24] Kamali S M, Arbabi E, Arbabi A et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 7, 041056(2017).

    [25] Li S Q, Li X Y, Wang G X et al. Multidimensional manipulation of photonic spin Hall effect with a single-layer dielectric metasurface[J]. Advanced Optical Materials, 7, 1801365(2019).

    [26] Li S Q, Li X Y, Zhang L et al. Efficient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface[J]. Advanced Optical Materials, 8, 1901666(2020).

    [27] Li T Y, Li X Y, Yan S H et al. Generation and conversion dynamics of dual Bessel beams with a photonic spin-dependent dielectric metasurface[J]. Physical Review Applied, 15, 014059(2021).

    [28] Li T Y, Xu X H, Fu B Y et al. Integrating the optical tweezers and spanner onto an individual single-layer metasurface[J]. Photonics Research, 9, 1062-1068(2021).

    [29] Li X Y, Zhou Y, Ge S Y et al. Experimental demonstration of optical trapping and manipulation with multifunctional metasurface[J]. Optics Letters, 47, 977-980(2022).

    [30] Liu M Z, Huo P C, Zhu W Q et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface[J]. Nature Communications, 12, 2230(2021).

    [31] Ou K, Yu F L, Li G H et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Science Advances, 6, eabc0711(2020).

    [32] Ren Y Z, Guo S H, Zhu W Q et al. Full-Stokes polarimetry for visible light enabled by an all-dielectric metasurface[J]. Advanced Photonics Research, 3, 2100373(2022).

    [33] Rubin N A, D'Aversa G, Chevalier P et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 365, eaax1839(2019).

    [34] Shi Z J, Khorasaninejad M, Huang Y W et al. Single-layer metasurface with controllable multiwavelength functions[J]. Nano Letters, 18, 2420-2427(2018).

    [35] Sisler J, Chen W T, Zhu A Y et al. Controlling dispersion in multifunctional metasurfaces[J]. APL Photonics, 5, 056107(2020).

    [36] Sroor H, Huang Y W, Sephton B et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nature Photonics, 14, 498-503(2020).

    [37] Wang E L, Niu J B, Liang Y H et al. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields[J]. Advanced Optical Materials, 8, 1901674(2020).

    [38] Yoon G, Kim J, Mun J et al. Wavelength-decoupled geometric metasurfaces by arbitrary dispersion control[J]. Communications Physics, 2, 129(2019).

    [39] Zhang F, Pu M B, Luo J et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic Engineering, 44, 319-325, 371(2017).

    [40] Zhang S, Huo P C, Zhu W Q et al. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface[J]. Laser & Photonics Reviews, 14, 2000062(2020).

    [41] Zhao R Z, Sain B, Wei Q S et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 7, 95(2018).

    [42] Zhou H Q, Sain B, Wang Y T et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 14, 5553-5559(2020).

    [43] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [44] Hao J M, Zhou L, Chan C T. An effective-medium model for high-impedance surfaces[J]. Applied Physics A, 87, 281-284(2007).

    [45] Sievenpiper D F, Schaffner J H, Song H J et al. Two-dimensional beam steering using an electrically tunable impedance surface[J]. IEEE Transactions on Antennas and Propagation, 51, 2713-2722(2003).

    [46] Pancharatnam S. Generalized theory of interference and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 44, 398-417(1956).

    [47] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A, 392, 45-57(1984).

    [48] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [49] Arbabi A, Horie Y, Ball A J et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 6, 7069(2015).

    [50] Hasman E, Kleiner V, Biener G et al. Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics[J]. Applied Physics Letters, 82, 328-330(2003).

    [51] Lei S W, Zhang X, Zhu S Q et al. Generation of Airy beam arrays in real and K spaces based on a dielectric metasurface[J]. Optics Express, 29, 18781-18790(2021).

    [52] Aieta F, Kats M A, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015).

    [53] Ren J Z, Li T Y, Fu B Y et al. Wavelength-dependent multifunctional metalens devices via genetic optimization[J]. Optical Materials Express, 11, 3908-3916(2021).

    [54] Fu B Y, Li T Y, Zou X J et al. Steerable chromatic dispersive metalenses in dual bands[J]. Journal of Physics D, 55, 255105(2022).

    [55] Presutti F, Monticone F. Focusing on bandwidth: achromatic metalens limits[J]. Optica, 7, 624-631(2020).

    [56] Brown B R, Lohmann A W. Complex spatial filtering with binary masks[J]. Applied Optics, 5, 967-969(1966).

    [57] Khorasaninejad M, Ambrosio A, Kanhaiya P et al. Broadband and chiral binary dielectric meta-holograms[J]. Science Advances, 2, e1501258(2016).

    [58] Deng Z L, Deng J H, Zhuang X et al. Facile metagrating holograms with broadband and extreme angle tolerance[J]. Light: Science & Applications, 7, 78(2018).

    [59] Deng Z L, Deng J H, Zhuang X et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 18, 2885-2892(2018).

    [60] Bao Y J, Yu Y, Xu H F et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light: Science & Applications, 8, 95(2019).

    [61] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 32, e1905659(2020).

    [62] Bao Y J, Wen L, Chen Q et al. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface[J]. Science Advances, 7, eabh0365(2021).

    [64] Song Q H, Odeh M, Zúñiga-Pérez J et al. Plasmonic topological metasurface by encircling an exceptional point[J]. Science, 373, 1133-1137(2021).

    [65] Yang F, Prasad C S, Li W J et al. Non-Hermitian metasurface with non-trivial topology[J]. Nanophotonics, 11, 1159-1165(2022).

    [66] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [67] Overvig A C, Malek S C, Yu N F. Multifunctional nonlocal metasurfaces[J]. Physical Review Letters, 125, 017402(2020).

    [68] Overvig A, Yu N F, Alù A. Chiral quasi-bound states in the continuum[J]. Physical Review Letters, 126, 073001(2021).

    [69] Chen R, Li T Y, Bi Q H et al. Quasi-bound states in the continuum-based switchable light-field manipulator[J]. Optical Materials Express, 12, 1232-1241(2022).

    Tools

    Get Citation

    Copy Citation Text

    Mengjiao Liu, Tianyue Li, Qin Ge, Shuming Wang, Zhenlin Wang, Shining Zhu. Phase Modulation Mechanism and Research Progress of Multifunctional Metasurfaces[J]. Acta Optica Sinica, 2022, 42(21): 2126004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Apr. 11, 2022

    Accepted: May. 27, 2022

    Published Online: Nov. 4, 2022

    The Author Email: Wang Shuming (wangshuming@nju.edu.cn)

    DOI:10.3788/AOS202242.2126004

    Topics