Journal of the European Optical Society-Rapid Publications, Volume. 19, Issue 1, 2023024(2023)

Two-wavelength digital holography through fog

Alexander Gröger1、*, Giancarlo Pedrini1, Felix Fischer1, Daniel Claus2, Igor Aleksenko2, and Stephan Reichelt1
Author Affiliations
  • 1Institute of Applied Optics, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
  • 2Institut für Lasertechnologien in der Medizin und Messtechnik, Helmholtzstrasse 12, Ulm 89081, Germany
  • show less
    References(25)

    [1] A. Gröger, G. Pedrini, D. Claus, I. Alekseenko, F. Gloeckler, S. Reichelt. Advantages of holographic imaging through fog. Appl. Opt., 62, D68(2023).

    [2] A.E. Tippie, J.R. Fienup. Weak-object image reconstructions with single-shot digital holography, weak-object image reconstructions with single-shot digital holography. Biomedical optics and 3-D imaging, DM4C.5(2012).

    [3] M. Gross, M. Atlan. Digital holography with ultimate sensitivity. Opt. Lett., 32, 909(2007).

    [4] F. Verpillat, F. Joud, M. Atlan, M. Gross. Digital holography at shot noise level. J. Display Technol., 6, 455(2010).

    [5] K.A. Stetson. Holographic fog penetration. J. Opt. Soc. Am., 57, 1060(1967).

    [6] A. Lohmann, C. Shuman. Image holography through convective fog. Opt. Commun., 7, 93(1973).

    [7] J. Dykes, Z. Nazer, A.P. Mosk, O.L. Muskens. Imaging through highly scattering environments using ballistic and quasi-ballistic light in a common-path sagnac interferometer. Opt. Express, 28, 10386(2020).

    [8] M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, P. Ferraro. Imaging live humans through smoke and flames using far-infrared digital holography. Opt. Express, 21, 5379(2013).

    [9] J.C. Marron, R.L. Kendrick, S.T. Thurman, N.L. Seldomridge, T.D. Grow, C.W. Embry, A.T. Bratcher. Extended-range digital holographic imaging, Extended-range digital holographic imaging. Turner M.D., Kamerman G.W. (eds.), Laser Radar Technology and Applications XV, 7684, 493-498(2010).

    [10] A.V. Kanaev, A.T. Watnik, D.F. Gardner, C. Metzler, K.P. Judd, P. Lebow, K.M. Novak, J.R. Lindle. Imaging through extreme scattering in extended dynamic media. Opt. Lett., 43, 3088(2018).

    [11] C. Dunsby, P. French. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J. Phys. D – Appl. Phys., 36, R207(2003).

    [12] D. Kijima, T. Kushida, H. Kitajima, K. Tanaka, H. Kubo, T. Funatomi, Y. Mukaigawa. Time-of-flight imaging in fog using multiple time-gated exposures. Opt. Express, 29, 6453(2021).

    [13] F. Caimi, F. Dalgleish. Performance considerations for continuous-wave and pulsed laser line scan (lls) imaging systems. J. Europ. Opt. Soc. Rap. Public., 5, 10020s(2010).

    [14] A.A. Friesem, U. Levy. Fringe formation in two-wavelength contour holography. Appl. Opt., 15, 3009(1976).

    [15] G. Pedrini, P. Fröning, H.J. Tiziani, M.E. Gusev. Pulsed digital holography for high-speed contouring that uses a two-wavelength method. Appl. Opt., 38, 3460(1999).

    [16] C. Wagner, W. Osten, S. Seebacher. Direct shape measurement by digital wavefront reconstruction and multi-wavelength contouring. Opt. Eng., 39, 79(2000).

    [17] D. Carl, M. Fratz, M. Pfeifer, D.M. Giel, H. Höfler. Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths. Appl. Opt., 48, H1(2009).

    [18] G. Pedrini, I. Alekseenko, G. Jagannathan, M. Kempenaars, G. Vayakis, W. Osten. Feasibility study of digital holography for erosion measurements under extreme environmental conditions inside the international thermonuclear experimental reactor tokamak. Appl. Opt., 58, A147(2019).

    [19] J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, C. Depeursinge. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Opt. Express, 15, 7231(2007).

    [20] D. Claus, I. Alekseenko, M. Grabherr, G. Pedrini, R. Hibst. Snap-shot topography measurement via dual-vcsel and dual wavelength digital holographic interferometry. Light: Adv. Manuf., 2, 403(2021).

    [21] M. Fratz, T. Seyler, A. Bertz, D. Carl. Digital holography in production: an overview. Light: Adv. Manuf., 2, 283(2021).

    [22] F. Willomitzer, P.V. Rangarajan, F. Li, M.M. Balaji, M.P. Christensen, O. Cossairt. Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography. Nat. Commun., 12, 6647(2021).

    [23] A. Beer. Bestimmung der Absorption des rothen Lichts in farbigen Fluessigkeiten. Ann. Phys., 162, 78(1852).

    [24] D. Gabor. A new microscopic principle. Nature, 161, 777(1948).

    [25] G. Valadão, J.M. Bioucas-Dias. PUMA: Phase Unwrapping via MAx flows, 609-612(2007).

    Tools

    Get Citation

    Copy Citation Text

    Alexander Gröger, Giancarlo Pedrini, Felix Fischer, Daniel Claus, Igor Aleksenko, Stephan Reichelt. Two-wavelength digital holography through fog[J]. Journal of the European Optical Society-Rapid Publications, 2023, 19(1): 2023024

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 15, 2023

    Accepted: Apr. 17, 2023

    Published Online: Aug. 31, 2023

    The Author Email: Gröger Alexander (alexander.groeger@ito.uni-stuttgart.de)

    DOI:10.1051/jeos/2023024

    Topics