Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 1810(2024)
Microstructure and Performance Analysis of Solid Oxide Fuel Cell La0.6Sr0.4CoO3?δ?Ce0.8Gd0.2O2?δ Cathode Synthesized by Flame Spray Pyrolysis and Spray Drying
[1] [1] XIANG L K, CHU H Q, REN F, et al. Numerical analysis of the effect of CO2 on combustion characteristics of laminar premixed methane/air flames[J]. J Energy Inst, 2019, 92(5): 1487-1501.
[2] [2] REN F, XIANG L K, CHU H Q, et al. Modeling study of the impact of blending N2, CO2, and H2O on characteristics of CH4 laminar premixed combustion[J]. Energy Fuels, 2020, 34(2): 1184-1192.
[3] [3] GAO Z, CHENG X G, REN F, et al. Compositional effects on sooting tendencies of diesel surrogate fuels with four components[J]. Energy Fuels, 2020, 34(7): 8796-8807.
[4] [4] ZOU X Y, MA C, LI A, et al. Nanoparticle-assisted Ni-co binary single-atom catalysts supported on carbon nanotubes for efficient electroreduction of CO2 to syngas with controllable CO/H2 ratios[J]. ACS Appl Energy Mater, 2021, 4(9): 9572-9581.
[5] [5] HUANG Z, ZHU L, LI A, et al. Renewable synthetic fuel: Turning carbon dioxide back into fuel[J]. Front Energy, 2022, 16(2): 145-149.
[6] [6] HAUCH A, KüNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118.
[8] [8] NI Weijie, ZHU Tenglong, CHEN Xiaoyang, et al. J Chin Ceram Soc, 2019, 47(3): 313-319.
[9] [9] SONG Ming, HU Jiawang, JIANG Wenchun, et al. J Chin Ceram Soc, 2024, 52(1): 9-18.
[10] [10] CONNOR P A, YUE X L, SAVANIU C D, et al. Tailoring SOFC electrode microstructures for improved performance[J]. Adv Energy Mater, 2018, 8(23): 1800120.
[11] [11] PARK B K, BARNETT S A. Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration[J]. J Mater Chem A, 2020, 8(23): 11626-11631.
[12] [12] WANG Lingling, SHAO Wei, HAN Fei, et al. J Chin Ceram Soc, 2024, 52(1): 305-321.
[13] [13] BI Z H, CHENG M J, DONG Y L, et al. Electrochemical evaluation of La0.6Sr0.4CoO3-La0.45Ce0.55O2 composite cathodes for anode-supported La0.45Ce0.55O2-La0.9Sr0.1Ga0.8Mg0.2O2.85 bilayer electrolyte solid oxide fuel cells[J]. Solid State Ion, 2005, 176(7-8): 655-661.
[14] [14] RIED P, BUCHER E, PREIS W, et al. Characterisation of La0.6Sr0.4Co0.2Fe0.8O3-d and Ba0.5Sr0.5Co0.8Fe0.2O3-d as cathode materials for the application in intermediate temperature fuel cells[J]. ECS Trans, 2007, 7(1): 1217-1224.
[15] [15] HUANG Z F, LIU Z J, HU H, et al. Evaluation of La0.6Sr0.4CoO3-δ - Ce0.85Sm0.075Nd0.075O2-δ composite cathodes for intermediate temperature solid oxide fuel cells[J]. Ceram Int, 2022, 48(11): 16319-16325.
[16] [16] DEVELOS-BAGARINAO K, DE VERO J, KISHIMOTO H, et al. Multilayered LSC and GDC: An approach for designing cathode materials with superior oxygen exchange properties for solid oxide fuel cells[J]. Nano Energy, 2018, 52: 369-380.
[17] [17] KIM Y T, SHIKAZONO N. Investigation of La0.6Sr0.4CoO3-δ- Gd0.1Ce0.9O2-δ composite cathodes with different volume ratios by three dimensional reconstruction[J]. Solid State Ion, 2017, 309: 77-85.
[18] [18] KIM Y T, SHIKAZONO N. Evaluation of electrochemical reaction mechanisms of La0.6Sr0.4CoO3-δ-Gd0.1Ce0.9O2-δ composite cathodes by 3D numerical simulation[J]. Solid State Ion, 2018, 319: 162-169.
[19] [19] TAO Y K, SHAO J, WANG W G, et al. Optimisation and evaluation of La0.6Sr0.4CoO3-?δ cathode for intermediate temperature solid oxide fuel cells[J]. Fuel Cells, 2009, 9(5): 679-683.
[20] [20] JIANG Z Y, XIA C R, CHEN F L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/ impregnation technique[J]. Electrochim Acta, 2010, 55(11): 3595-3605.
[21] [21] JIANG S P. Activation, microstructure, and polarization of solid oxide fuel cell cathodes[J]. J Solid State Electrochem, 2007, 11(1): 93-102.
[22] [22] TASLEEM S, TAHIR M. Recent progress in structural development and band engineering of perovskites materials for photocatalytic solar hydrogen production: A review[J]. Int J Hydrog Energy, 2020, 45(38): 19078-19111.
[23] [23] WU Z Y, ZHANG Y Y, LIU Z Q, et al. Rapid gas-phase synthesis of the perovskite-type BaCe0.7Zr0.1Y0.1Yb0.1O3-δ proton-conducting nanocrystalline electrolyte for intermediate-temperature solid oxide fuel cells[J]. ACS Appl Mater Interfaces, 2022, 14(42): 47568-47577.
[24] [24] LI S Q, REN Y H, BISWAS P, et al. Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics[J]. Prog Energy Combust Sci, 2016, 55: 1-59.
[25] [25] VENKATESAN S, MITZEL J, WEGNER K, et al. Nanomaterials and films for polymer electrolyte membrane fuel cells and solid oxide cells by flame spray pyrolysis[J]. Renew Sustain Energy Rev, 2022, 158: 112080.
[26] [26] ANGEL S, BRAUN M, ALKAN B, et al. Spray-flame synthesis of LaFexCo1-xO3 (x = 0.2, 0.3) perovskite nanoparticles for oxygen evolution reaction in water splitting: Effect of precursor chemistry (acetates and nitrates)[J]. J Phys Chem A, 2023, 127(11): 2564-2576.
[27] [27] TARANCON A, BURRIEL M, SANTISO J, et al. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater chem, 2010, 20(19): 3799-3813
[28] [28] CHIARELLO G L, ROSSETTI I, FORNI L, et al. Solvent nature effect in preparation of perovskites by flame-pyrolysis[J]. Appl Catal B Environ, 2007, 72(3-4): 218-226.
[29] [29] ROTH P. Particle synthesis in flames[J]. Proc Combust Inst, 2007, 31(2): 1773-1788.
[30] [30] SHI Wangying, JIA Chuan, ZHANG Yongliang, et al. Acta Phys Chim Sin, 2019, 35(5): 509-516.
[31] [31] WEI Fei, WANG Leying, LUO Linghong, et al. J Chin Ceram Soc, 2023, 51(7): 1763-1772.
[32] [32] ZHANG Y, SHEN L Y, WANG Y H, et al. Enhanced oxygen reduction kinetics of IT-SOFC cathode with PrBaCo2O5+δ/Gd0.1Ce1.9O2?δ coherent interface[J]. J Mater Chem A, 2022, 10(7): 3495-3505.
Get Citation
Copy Citation Text
WANG Tianqi, XIANG Longkai, GAO Zhan, ZHANG Yiran, NI Na, TU Hengyong, ZHU Lei, HUANG Zhen. Microstructure and Performance Analysis of Solid Oxide Fuel Cell La0.6Sr0.4CoO3?δ?Ce0.8Gd0.2O2?δ Cathode Synthesized by Flame Spray Pyrolysis and Spray Drying[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 1810
Special Issue:
Received: Feb. 4, 2024
Accepted: --
Published Online: Aug. 26, 2024
The Author Email: Lei ZHU (tonyzhulei@sjtu.edu.cn)