Chinese Journal of Quantum Electronics, Volume. 39, Issue 5, 776(2022)

Research on wavelength-multiplexed quantum key distribution based on different optical fibers

Liangyuan ZHAO1,2,3、*, Lingyun CAO1, Hongyuan LIANG1, Zheng WEI1, Qianjun WU1, Jianlin QIAN2, and Zhengfu HAN3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(28)

    [1] [1] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[C]. Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing,1984: 175-179.

    [2] [2] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3): 1301-1350.

    [3] [3] Frohlich B, Dynes J F, Lucamarini M, et al. A quantum access network[J]. Nature, 2013, 501(7465): 69-72.

    [4] [4] Wang S, Chen W, Yin Z Q, et al. Practical gigahertz quantum key distribution robust against channel disturbance[J]. Optics Letters, 2018, 43(9): 2030-2033.

    [5] [5] Wang S, He D Y, Yin Z Q, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J]. Physical Review X, 2019, 9(2): 021046.

    [6] [6] Zhong X Q, Hu J Y, Curty M, et al. Proof-of-principle experimental demonstration of twin-field type quantum key distribution[J]. Physical Review Letters, 2019, 123(10): 100506.

    [7] [7] He D Y, Wang S, Chen W, et al. Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse[J]. Applied Physics Letters, 2017, 110(11): 111104.

    [8] [8] Wang S, Chen W, Yin Z Q, et al. Field and long-term demonstration of a wide area quantum key distribution network[J]. Optics Express, 2014, 22(18): 21739-21756.

    [9] [9] Bacco D, Vagniluca I, Lio B D, et al. Field trial of a finite-key quantum key distribution system in the Florence metropolitan area[J]. EPJ Quantum Technology, 2019, 6: 5.

    [10] [10] Townsend P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing[J]. Electronics Letters, 1997, 33(3): 188-190.

    [11] [11] Razavi M. Multiple-access quantum key distribution networks[J]. IEEE Transactions on Communications, 2012, 60(10): 3071-3079.

    [12] [12] Carpenter J, Xiong C L, Collins M J, et al. Mode multiplexed single-photon and classical channels in a few-mode fiber[J]. Optics Express, 2013, 21(23): 28794.

    [13] [13] Zhang J, Liu Y X, zdemir K, et al. Quantum internet using code division multiple access[J]. Scientific Reports, 2013, 3(7): 2211.

    [14] [14] Peters N A, Toliver P, Chapuran T E, et al. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments[J]. New Journal of Physics, 2009, 11(4): 045012.

    [15] [15] Dynes J F, Tam W W S, Plews A, et al. Ultra-high bandwidth quantum secured data transmission[J]. Scientific Reports, 2016, 6: 35149.

    [16] [16] Wang H, Zhou Y Y, Yu W. Performance analysis of wavelength assignment optimization scheme for hybrid quantum-classical networks[J]. Chinese Journal of Quantum Electronics, 2020, 37(1): 43-49.

    [18] [18] Schneider T. Nonlinear Optics in Telecommunications[M]. Berlin: Springer, 2007: 239.

    [19] [19] Eraerds P, Walenta N, Legré M, et al. Quantum key distribution and 1 Gbps data encryption over a single fibre[J]. New Journal of Physics, 2010, 12(6): 063027.

    [20] [20] Kawahara H, Medhipour A, Inoue K. Effect of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel[J]. Optics Communications, 2011, 284(2): 691-696.

    [21] [21] Hill K O, Johnson D C, Kawasaki B S, et al. cw three-wave mixing in single-mode optical fibers[J]. Journal of Applied Physics, 1978, 49(10): 5098-5106.

    [22] [22] National Standardization Technical Committee. Single-mode optical fibers for telecommunication-Part 1: Characteristics of a dispersion unshifted single-mode optical fiber: GB/T 9771.1-2008[S]. Beijing: China Standard Press, 2009.

    [23] [23] National Standardization Technical Committee. Single-mode optical fibers for telecommunication-Part 4: Characteristics of a dispersion-shifted single-mode optical fiber: GB/T 9771.4-2008[S]. Beijing: China Standard Press, 2009.

    [24] [24] National Standardization Technical Committee. Single-mode optical fibers for telecommunication-Part 2: Characteristics of a cut-off wavelength shifted single-mode optical fiber: GB/T 9771.2-2008[S]. Beijing: China Standard Press, 2009.

    [25] [25] National Standardization Technical Committee. Single-mode optical fibers for telecommunication-Part 5: Characteristics of a non-zero dispersion shifted single-mode optical fiber: GB/T 9771.5-2008[S]. Beijing: China Standard Press, 2009.

    [26] [26] National Standardization Technical Committee. Single-mode optical fibers for telecommunication-Part 6: Characteristics of a fiber with non-zero dispersion for wideband optical transport: GB/T 9771.6-2008[S]. Beijing: China Standard Press, 2009.

    [27] [27] Ma X F, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution[J]. Physical Review A, 2005, 72: 012326.

    [28] [28] Zhang Z, Zhao Q, Razavi M, et al. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems[J]. Physical Review A, 2017, 95: 012333.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Liangyuan, CAO Lingyun, LIANG Hongyuan, WEI Zheng, WU Qianjun, QIAN Jianlin, HAN Zhengfu. Research on wavelength-multiplexed quantum key distribution based on different optical fibers[J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 776

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 12, 2021

    Accepted: --

    Published Online: Oct. 14, 2022

    The Author Email: Liangyuan ZHAO (zhaoly@htgd.com.cn)

    DOI:10.3969/j.issn.1007-5461.2022.05.011

    Topics