Optics and Precision Engineering, Volume. 31, Issue 18, 2736(2023)

Weakly supervised video instance segmentation with scale adaptive generation regulation

Yinhui ZHANG, Weiqi HAI, Zifen HE*, Ying HUANG, and Dongdong CHEN
Author Affiliations
  • Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • show less
    References(32)

    [1] A BAYU, A WIBISONO, H A WISESA et al. Semantic segmentation of lidar point cloud in rural area, 73-78(1).

    [2] S MIHAI, P SHAH, G MAPP et al. Towards autonomous driving: a machine learning-based Pedestrian Detection System Using 16-Layer LiDAR, 271-276(18).

    [3] [3] 伍锡如, 薛其威. 基于激光雷达的无人驾驶系统三维车辆检测[J]. 光学 精密工程, 2022, 30(4):489-497. doi: 10.37188/OPE.20223004.0489WUX R, XUEQ W. 3D vehicle detection for unmanned driving systerm based on lidar[J]. Opt. Precision Eng., 2022, 30(4):489-497.(in Chinese). doi: 10.37188/OPE.20223004.0489

    [4] S J RAGURAMAN, J PARK. Intelligent drivable area detection system using camera and lidar sensor for autonomous vehicle, 429-436(2020).

    [5] F DOVIS, R IMAM, W J QIN et al. Opportunistic use of gnss signals to characterize the environment by means of machine learning based processing, 9190-9194(4).

    [6] N JOUBERT, T G R REID, F NOBLE. Developments in modern gnss and its impact on autonomous vehicle architectures, 2029-2036(2020).

    [7] M NAVARRO, J ARRIBAS, J VILÀ-VALLS et al. Hybrid GNSS/INS/UWB positioning for live demonstration assisted driving, 3294-3301(27).

    [8] C CHEN, G M XIONG, Z H ZHANG et al. 3D LiDAR-GPS/IMU calibration based on hand-eye calibration model for unmanned vehicle, 337-341(27).

    [9] [9] 王中宇, 倪显扬, 尚振东. 利用卷积神经网络的自动驾驶场景语义分割[J]. 光学 精密工程, 2019, 27(11): 2429-2438. doi: 10.3788/ope.20192711.2429WANGZ Y, NIX Y, SHANGZ D. Autonomous driving semantic segmentation with convolution neural networks[J]. Opt. Precision Eng., 2019, 27(11): 2429-2438.(in Chinese). doi: 10.3788/ope.20192711.2429

    [10] K F LEE, X Z CHEN, C W YU et al. An intelligent driving assistance system based on lightweight deep learning models. IEEE Access, 10, 111888-111900(2022).

    [11] [11] 孙建波, 张叶, 常旭岭. 基于改进Mask R-CNN+LaneNet的车载图像车辆压线检测[J]. 光学 精密工程, 2022, 30(7):854-868. doi: 10.37188/ope.20223007.0854SUNJ B, ZHANGY, CHANGX L. Vehicle pressure line detection based on improved Mask R-CNN+LaneNet[J]. Opt. Precision Eng., 2022, 30(7):854-868.(in Chinese). doi: 10.37188/ope.20223007.0854

    [12] K M HE, G GKIOXARI, P DOLLÁR et al. Mask R-CNN, 2980-2988(22).

    [13] Y Q WANG, Z L XU, H SHEN et al. Centermask: single shot instance segmentation with point representation, 9310-9318(13).

    [14] D BOLYA, C ZHOU, F Y XIAO et al. YOLACT: real-time instance segmentation, 9156-9165(2019).

    [15] H CHEN, K Y SUN, Z TIAN et al. Blendmask: top-down meets bottom-up for instance segmentation, 8570-8578(13).

    [16] L J YANG, Y C FAN, N XU. Video instance segmentation, 5187-5196.

    [17] J L CAO, R M ANWER, H CHOLAKKAL et al. SipMask: Spatial Information Preservation for Fast Image and Video Instance Segmentation, 1-18(2020).

    [18] M H LI, S LI, L D LI et al. Spatial feature calibration and temporal fusion for effective one-stage video instance segmentation, 11210-11219(20).

    [19] Y Q WANG, Z L XU, X L WANG et al. End-to-end video instance segmentation with transformers, 8737-8746(20).

    [20] H T LIU, R A RIVERA SOTO, F Y XIAO et al. Yolactedge: real-time instance segmentation on the edge, 9579-9585(2021).

    [21] G BERTASIUS, L TORRESANI. Classifying, segmenting, and tracking object instances in video with mask propagation, 9736-9745(13).

    [22] A ATHAR, S MAHADEVAN, A OS̆EP et al. STEm-Seg: Spatio-Temporal Embeddings for Instance Segmentation in Videos, 158-177(2020).

    [23] S S YANG, Y X FANG, X G WANG et al. Crossover learning for fast online video instance segmentation, 8023-8032(10).

    [24] C F SONG, Y HUANG, W L OUYANG et al. Box-driven class-wise region masking and filling rate guided loss for weakly supervised semantic segmentation, 3131-3140(15).

    [25] CC HSU, KJ HSU, CC TSAI et al. Weakly supervised instance segmentation using the bounding box tightness prior. Advances in Neural Information Processing Systems, 6582-6593(2019).

    [26] X G WANG, J P FENG, B HU et al. Weakly-supervised instance segmentation via class-agnostic learning with salient images, 10220-10230(20).

    [27] Z TIAN, C H SHEN, X L WANG et al. Boxinst: high-performance instance segmentation with box annotations, 5439-5448(20).

    [28] Z TIAN, C H SHEN, H CHEN. Conditional Convolutions for Instance Segmentation, 282-298(2020).

    [29] T Y LIN, P DOLLÁR, R GIRSHICK et al. Feature pyramid networks for object detection, 936-944(21).

    [30] J HU, L SHEN, G SUN. Squeeze-and-excitation networks, 7132-7141(18).

    [31] [31] 黄滢, 何自芬, 杨宏宽, 等. 极化自注意力调控的情景式视频实例多尺度分割[J]. 计算机学报, 2022, 45(12): 2605-2618. doi: 10.11897/SP.J.1016.2022.02605HUANGY, HEZ F, YANGH K, et al. Multi-scale segmentation of episodic video instance through polarized self-attention manipulation[J]. Chinese Journal of Computers, 2022, 45(12): 2605-2618.(in Chinese). doi: 10.11897/SP.J.1016.2022.02605

    [32] P Q WANG, P F CHEN, Y YUAN et al. Understanding convolution for semantic segmentation, 1451-1460(12).

    Tools

    Get Citation

    Copy Citation Text

    Yinhui ZHANG, Weiqi HAI, Zifen HE, Ying HUANG, Dongdong CHEN. Weakly supervised video instance segmentation with scale adaptive generation regulation[J]. Optics and Precision Engineering, 2023, 31(18): 2736

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Dec. 14, 2022

    Accepted: --

    Published Online: Oct. 12, 2023

    The Author Email: HE Zifen (zyhhzf1998@163.com)

    DOI:10.37188/OPE.20233118.2736

    Topics