Optics and Precision Engineering, Volume. 25, Issue 11, 2779(2017)

Fabrication of diffractive X-ray optics and their performance characterization

CHEN Yi-fang*
Author Affiliations
  • [in Chinese]
  • show less
    References(58)

    [1] [1] ICE G E, BUDAI J D, PANG J W L. The race to X-ray microbeam and nanobeam science [J]. Science, 2011, 334(6060): 1234-1239.

    [2] [2] SAKDINAWAT A, ATTWOOD D. Nanoscale X-ray imaging [J]. Nature Photonics, 2010, 4(12): 840-848.

    [3] [3] KRASNOPEROVA A A, XIAO J, CERRINA F, et al.. Fabrication of hard X-ray phase zone plate by X-ray lithography [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 1993, 11(6): 2588-2591.

    [4] [4] SARKAR S S, SOLAK H H, SAIDANI M, et al.. High-resolution Fresnel zone plate fabrication by achromatic spatial frequency multiplication with extreme ultraviolet radiation[J]. Optics Letters, 2011, 36(10): 1860-1862.

    [5] [5] ZHANG Y CH, XIE CH Q. Differential-interference-contrast digital in-line holography microscopy based on a single-optical-element [J]. Optics Letters, 2015, 40(21): 5015-5018.

    [6] [6] MAYER M, KESKINBORA K, GRVENT C, et al.. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling. Erratum [J]. Journal of Synchrotron Radiation, 2014, 21(3): 640.

    [7] [7] KAMIJO N, SUZUKI Y, TAKANO H, et al.. Microbeam of 100 keV X ray with a sputtered-sliced Fresnel zone plate [J]. Review of Scientific Instruments, 2003, 74(12): 5101-5104.

    [8] [8] VILA-COMAMALA J, JEFIMOVS K, RAABE J, et al.. Silicon Fresnel zone plates for high heat load X-ray microscopy [J]. Microelectronic Engineering, 2008, 85(5-6): 1241-1244.

    [9] [9] KESKINBORA K, GRVENT C, BECHTEL M, et al.. Ion beam lithography for Fresnel zone plates in X-ray microscopy [J]. Optics Express, 2013, 21(10): 11747-11756.

    [10] [10] CHEN Y T, LO T N, CHIU C W, et al.. Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating [J]. Journal of Synchrotron Radiation, 2008, 15(2): 170-175.

    [11] [11] UHLN F, LINDQVIST S, NILSSON D, et al.. New diamond nanofabrication process for hard x-ray zone plates [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2011, 29(6): 06FG03.

    [12] [12] CHAO W L, KIM J, REKAWA S, et al.. Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy [J]. Optics Express, 2009, 17(20): 17669-17677.

    [13] [13] REINSPACH J, UHLN F, HERTZ H M, et al.. Twelve nanometer half-pitch W-Cr-HSQ trilayer process for soft X-ray tungsten zone plates [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2011, 29(6): 06FG02.

    [14] [14] GLEBER S C, WOJCIK M, LIU J, et al.. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime [J]. Optics Express, 2014, 22(23): 28142-28153.

    [15] [15] MOHACSI I, KARVINEN P, VARTIAINEN I, et al.. High-efficiency zone-plate optics for multi-keV X-ray focusing [J]. Journal of Synchrotron Radiation, 2014, 21(3): 497-501.

    [16] [16] CHEN Y T, LO T N, CHIU C W, et al.. Fabrication of high-aspect-ratio Fresnel zone plates by e-beam lithography and electroplating [J]. Journal of Synchrotron Radiation, 2008, 15(2): 170-175.

    [17] [17] GORELICK S, VILA-COMAMALA J, GUZENKO V A, et al.. High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam lithography and electroplating [J]. Journal of Synchrotron Radiation, 2011, 18(3): 442-446.

    [18] [18] GRENCI G, POZZATO A, SOVERNIGO E, et al.. Fabrication of nickel diffractive phase elements for x-ray microscopy at 8 keV photon energy [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2012, 30(3): 031205.

    [19] [19] UHLN F, NILSSON D, RAHOMKI J, et al.. Nanofabrication of tungsten zone plates with integrated platinum central stop for hard X-ray applications [J]. Microelectronic Engineering, 2014, 116: 40-43.

    [20] [20] TENNANT D M, RAAB E L, BECKER M M, et al.. High resolution germanium zone plates and apertures for soft X-ray focalometry [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 1990, 8(6): 1970-1974.

    [21] [21] VILA-COMAMALA J, JEFIMOVS K, RAABE J, et al.. Silicon Fresnel zone plates for high heat load X-ray microscopy [J]. Microelectronic Engineering, 2008, 85(5-6): 1241-1244.

    [22] [22] VILA-COMAMALA J, GORELICK S, FRM E, et al.. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime [J]. Optics Express, 2011, 19(1): 175-184.

    [23] [23] XIAO K, LIU Y, FU SH J. Analysis of influence of 4 fabrication errors on X-ray zone plates by summing up diffraction fields [J]. Microfabrication Technology, 2005(4): 25-30. (in Chinese)

    [28] [28] ZHU X L, WANG D Q, XIE CH Q, et al.. Fabrication of X-ray diffractive optical elements for ICF target diagnosis [J]. SPIE, 2007, 6722: 672208.

    [29] [29] JIA J, XIE CH Q, LIU M, et al.. A super-resolution Fresnel zone plate and photon sieve [J]. Optics and Lasers in Engineering, 2010, 48(7-8): 760-765.

    [30] [30] XIE CH Q, ZHU X L, LI H L, et al.. Feasibility study of hard-x-ray nanofocusing above 20 keV using compound photon sieves [J]. Optics Letters, 2010, 35(23): 4048-4050.

    [32] [32] LIU L H, LIU G, XIONG Y, et al.. Fabrication of Fresnel zone plates with high aspect ratio by soft X-ray lithography [J]. Microsystem Technologies, 2008, 14(9-11): 1251-1255.

    [33] [33] LIU L H, LIU G, XIONG Y, et al.. Fabrication of X-ray imaging zone plates by e-beam and X-ray lithography [J]. Microsystem Technologies, 2010, 16(8-9): 1315-1321.

    [34] [34] WANG D Q, KANG X H, XIE CH Q, et al.. Study on image datum for high resolution zone plates fabricated by e-beam [J]. Microfabrication Technology, 2005(2): 28-33. (in Chinese)

    [35] [35] WU X, CHEN J N, ZHU X L, et al.. Fabrication of high-aspect-ratio hard X-ray focusing zone plates [J]. Microfabrication Technology, 2008(6): 9-11. (in Chinese)

    [37] [37] LIU J P, SHAO J H, ZHANG S CH, et al.. Simulation and experimental study of aspect ratio limitation in Fresnel zone plates for hard-X-ray optics [J]. Applied Optics, 2015, 54(32): 9630-9636.

    [38] [38] LIU J P, LI X, CHEN S H, et al.. Nanofabrication and characterization of a grating-based condenser for uniform illumination with hard X-rays [J]. Journal of Synchrotron Radiation, 2017, 24(3): 595-599, 10.1107/S1600577517002247.

    [39] [39] LIU J P. Nanofabrication and applications research of high aspect ratio metal nanostructures based on electron-beam lithography [D]. Shanghai: Fudan University, 2006. (in Chinese)

    [40] [40] LIU J P, ZHANG S CH, MA Y Q, et al.. Gold nanopillar arrays as biosensors fabricated by electron beam lithography combined with electroplating[J]. Applied Optics, 2015, 54(9): 2537-2542.

    [41] [41] SHALAEV V M. Optical negative-index metamaterials [J]. Nature Photonics, 2007, 1(1): 41-48.

    [42] [42] ONO A, KATO J I, KAWATA S. Subwavelength optical imaging through a metallic nanorod array [J]. Physical Review Letters, 2005, 95(26): 267407.

    [43] [43] CHEN J B, WANG Y, JIA B H, et al.. Observation of the inverse Doppler effect in negative-index materials at optical frequencies [J]. Nature Photonics, 2011, 5(4): 239-245.

    [44] [44] REED E J. Physical optics: backwards doppler shifts [J]. Nature Photonics, 2011, 5(4): 199-200.

    [45] [45] CHEN Y F. Nanofabrication by electron beam lithography and its applications: a review [J]. Microelectronic Engineering, 2015, 135: 57-72.

    [46] [46] ANDERSON E H, OLYNICK D L, HARTENECK B, et al.. Nanofabrication and diffractive optics for high-resolution x-ray applications [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2000, 18(6): 2970-2975.

    [47] [47] YIN G C, SONG Y F, TANG M T, et al.. 30 nm resolution X-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope [J]. Applied Physics Letters, 2006, 89(22): 221122.

    [48] [48] RAU C, C V, PETERSON K M, JEMIAN P R, et al.. Nanofabrication and characterization of a grating based condenser for uniform illumination in hard X-ray [C]. Proceedings of the 8th International Conference on X-ray Microscopy, IPAP Conference Series, 2005, 7: 7-8.

    [49] [49] NIEMANN B, GUTTMANN P, REHBEIN S, et al.. Concept and realization of the novel rotating condenser-monochromator at the Gttingen TXM at Bessy Ⅱ [J]. Journal de Physique IV, 2003, 104(2): 273-276.

    [50] [50] JEFIMOVS K, VILA-COMAMALA J, STAMPANONI M, et al.. Beam-shaping condenser lenses for full-field transmission X-ray microscopy [J]. Journal of Synchrotron Radiation, 2008, 15(1): 106-108.

    [51] [51] SUZUKI Y, TAKEUCHI A, UESUGI K, et al.. Hollow-cone illumination for hard X-ray imaging microscopy by rotating-grating condenser optics [J]. AIP Conference Proceedings, 2011,1365(1): 160-163.

    [52] [52] DAVID C, GORELICK S, RUTISHAUSER S, et al.. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates [J]. Scientific Reports, 2011, 1: 57.

    [53] [53] LINDBLOM M, REINSPACH J, VON HOFSTEN O, et al.. High-aspect-ratio germanium zone plates fabricated by reactive ion etching in chlorine [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2009, 27(2): L1-L3.

    [54] [54] LINDBLOM M, HERTZ H M, HOLMBERG A. SU-8 plating mold for high-aspect-ratio nickel zone plates [J]. Microelectronic Engineering, 2007, 84(5-8): 1136-1139.

    [55] [55] SCHNEIDER G, SCHLIEBE T, ASCHOFF H. Cross-linked polymers for nanofabrication of high-resolution zone plates in nickel and germanium [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 1995, 13(6): 2809-2812.

    [56] [56] UHLN F, LINDQVIST S, NILSSON D, et al.. New diamond nanofabrication process for hard X-ray zone plates [J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2011, 29(6): 06FG03.

    [57] [57] KIRZ J. Phase zone plates for X rays and the extreme UV [J]. Journal of the Optical Society of America, 1974, 64(3): 301-309.

    [58] [58] POLYANSKIY M. Refractive index database [EB/OL]. 2015. https: //refractiveindex.info.

    CLP Journals

    [1] WANG Yi, HOU Shuang-yue, XIONG Ying, TIAN Yang-chao, LIU Gang. Optimization of development process for fabrication of high aspect ratio gratings[J]. Optics and Precision Engineering, 2020, 28(3): 632

    [2] ZHENG Yan-chang, HU Hua-kui, QIU Ke-qiang, WANG Hai, XU Xiang-dong, FU Shao-jun. Method for increasing duty cycle of photoresist grating by hot pressing and its application[J]. Optics and Precision Engineering, 2019, 27(1): 94

    [3] HAN Qi, CHEN Gui-min, SHAO Xiao-dong. Uncertainty analysis of MEMS force gauges based on Monte Carlo method[J]. Optics and Precision Engineering, 2018, 26(9): 2289

    Tools

    Get Citation

    Copy Citation Text

    CHEN Yi-fang. Fabrication of diffractive X-ray optics and their performance characterization[J]. Optics and Precision Engineering, 2017, 25(11): 2779

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 28, 2017

    Accepted: --

    Published Online: Jan. 17, 2018

    The Author Email: Yi-fang CHEN (yifangchen@fudan.edu.cn)

    DOI:10.3788/ope.20172511.2779

    Topics