Optical Instruments, Volume. 41, Issue 1, 29(2019)
Abnormal event recognition based on the surveillance video
[1] [1] YIN H P, CHAI Y, YANG S X, et al. Fast-moving target tracking based on mean shift and framedifference methods[J]. Journal of Systems Engineering and Electronics, 2011, 22(4): 587 -592.
[2] [2] STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]//Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Ft. Collins, USA: IEEE, 1999: 246-252.
[3] [3] BARNICH O, VAN DROOGENBROECK M. ViBE: a powerful random technique to estimate the background in video sequences[C]//Proceedings of 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei: IEEE, 2009: 945-948.
[4] [4] BARNICH O, VAN DROOGENBROECK M. ViBe: a universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709.
[5] [5] COLLINS R T, LIPTON A J, KANADE T. A system for video surveillance and monitoring[J]. VSAM final report, 2000: 1-68.
[6] [6] CHO S H, KANG H B. Abnormal behavior detection using hybrid agents in crowded scenes[M]. Pattern Recognition Letters, 2014, 44: 64-70.
[8] [8] HARRIS C, STEPHENS M. A combined corner and edge detector[C]//Proceedings of the 4th Alvey Vision Conference.[S.l.]: The Plessey Company, 1988: 147-151.
[9] [9] TOMASI C, KANADE T. Detection and tracking of point features[R]. Technical Report CMU-CS-91-132, 1991: 9795-9802.
Get Citation
Copy Citation Text
DING Xi, YUAN Minghui. Abnormal event recognition based on the surveillance video[J]. Optical Instruments, 2019, 41(1): 29
Category:
Received: Apr. 13, 2018
Accepted: --
Published Online: Apr. 7, 2019
The Author Email: Xi DING (usstxi@163.com)