Journal of Inorganic Materials, Volume. 39, Issue 12, 1397(2024)
[1] Z HUANG, Y BAI, X HUANG et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature, 623, 531(2023).
[3] J PARK, J KIM, H S YUN et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 616, 724(2023).
[4] Z LIANG, Y ZHANG, H XU et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 624, 557(2023).
[5] R WANG, M MUJAHID, Y DUAN et al. A review of perovskites solar cell stability. Adv. Funct. Mater., 29, 1808843(2019).
[6] W HUI, X KANG, B WANG et al. Stable electron-transport-layer- free perovskite solar cells with over 22% power conversion efficiency. Nano Lett., 23, 2195(2023).
[7] Q LIU, Y LIU, H LIU et al. Magnetron sputtering Zn2SnO4 electron-transport layer for all room-temperature-processed perovskite solar cells. Sol. RRL, 8, 2300926(2024).
[8] H KIMATA, S YAMAGUCHI, T GOTANDA et al. Open-circuit- voltage improvement mechanism of perovskite solar cells revealed by operando spin observation. ACS Appl. Mater. Interfaces, 15, 58539(2023).
[9] Y GOU, H WANG, Y LI et al. Developing a gradient titanium dioxide/amorphous tantalum nitride electron transporting layer for efficient and stable perovskite solar cells. Inorg. Chem. Front., 10, 6622(2023).
[10] J LIU, Y YIN, B HE et al. Focusing on the bottom contact: carbon quantum dots embedded SnO2 electron transport layer for high- performance and stable perovskite solar cells. Mat. Today Phys., 101041(2023).
[11] W HU, W ZHOU, X LEI et al. Low-temperature
[12] Z JIANG, Z HE, S MA et al. Effect of yttrium-incorporated TiO2 electron transport layer on the photovoltaic performance of triple- cation perovskite solar cells. J. Phys. Chem. C, 127, 19432(2023).
[13] J HE, T DING, W WU. Surface lattice perturbation of electron transport layer reducing oxygen vacancies for positive photovoltaic effect. Sol. RRL, 6, 2200226(2022).
[14] S LI, Y YANG, K SU et al. Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells. Chin. J. Chem. Eng., 29(2022).
[15] S YOU, H ZENG, Z KU et al. Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater., 32, 2003990(2020).
[16] L LIN, T W JONES, T C J YANG et al. Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater., 31, 2008300(2021).
[17] T BU, J LI, F ZHENG et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun., 9, 4609(2018).
[18] H B LEE, M K JEON, N KUMAR et al. Boosting the efficiency of SnO2-triple cation perovskite system beyond 20% using nonhalogenated antisolvent. Adv. Funct. Mater., 29, 1903213(2019).
[19] P F MÉNDEZ, S K M MUHAMMED, E M BAREA et al. Analysis of the UV-Ozone-treated SnO2 electron transporting layer in planar perovskite solar cells for high performance and reduced hysteresis. Sol. RRL, 3, 1900191(2019).
[20] J ZHOU, R ZHOU, J ZHU et al. Colloidal SnO2-assisted CdS electron transport layer enables efficient electron extraction for planar perovskite solar cells. Sol. RRL, 5, 2100494(2021).
[21] H LIU, Z CHEN, H WANG et al. A facile room temperature solution synthesis of SnO2 quantum dots for perovskite solar cells. J. Mater. Chem. A, 7, 10636(2019).
[22] K K SONG, X P ZOU, H Y ZHANG et al. Effect of SnO2 colloidal dispersion solution concentration on the quality of perovskite layer of solar cells. Coatings, 11, 591(2021).
[23] BAENA J P CORREA, L STEIER, W TRESS et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci., 8, 2928(2015).
[24] E H ANARAKI, A KERMANPUR, M T MAYER et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett., 3, 773(2018).
[25] B DING, S Y HUANG, Q Q CHU et al. Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A, 6, 10233(2018).
[26] T BU, X LIU, Y ZHOU et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci., 10, 2509(2017).
[27] C WU, W FANG, Q CHENG et al. MXene-regulated perovskite vertical growth for high-performance solar cells. Angew. Chem. Int. Ed., 61, e202210970(2022).
[28] Y ZOU, J EICHHORN, S RIEGER et al. Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells. Nano Energy, 108449(2023).
[29] J DOU, C ZHU, H WANG et al. Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater., 33, 2102947(2021).
Get Citation
Copy Citation Text
Suolan LIU, Fuyuan LUAN, Zihua WU, Chunhui SHOU, Huaqing XIE, Songwang YANG.
Category:
Received: Apr. 18, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: YANG Songwang (swyang@mail.sic.ac.cn)