Journal of Inorganic Materials, Volume. 39, Issue 12, 1397(2024)

In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells

Suolan LIU1,2, Fuyuan LUAN1,3, Zihua WU3,4, Chunhui SHOU5, Huaqing XIE3,4, and Songwang YANG1,2、*
Author Affiliations
  • 11. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 22. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 33. School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
  • 44. Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai 201209, China
  • 55. Zhejiang Baima Lake Laboratory Co. Ltd., Hangzhou 310000, China
  • show less
    References(29)

    [1] Z HUANG, Y BAI, X HUANG et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature, 623, 531(2023).

    [3] J PARK, J KIM, H S YUN et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 616, 724(2023).

    [4] Z LIANG, Y ZHANG, H XU et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 624, 557(2023).

    [5] R WANG, M MUJAHID, Y DUAN et al. A review of perovskites solar cell stability. Adv. Funct. Mater., 29, 1808843(2019).

    [6] W HUI, X KANG, B WANG et al. Stable electron-transport-layer- free perovskite solar cells with over 22% power conversion efficiency. Nano Lett., 23, 2195(2023).

    [7] Q LIU, Y LIU, H LIU et al. Magnetron sputtering Zn2SnO4 electron-transport layer for all room-temperature-processed perovskite solar cells. Sol. RRL, 8, 2300926(2024).

    [8] H KIMATA, S YAMAGUCHI, T GOTANDA et al. Open-circuit- voltage improvement mechanism of perovskite solar cells revealed by operando spin observation. ACS Appl. Mater. Interfaces, 15, 58539(2023).

    [9] Y GOU, H WANG, Y LI et al. Developing a gradient titanium dioxide/amorphous tantalum nitride electron transporting layer for efficient and stable perovskite solar cells. Inorg. Chem. Front., 10, 6622(2023).

    [10] J LIU, Y YIN, B HE et al. Focusing on the bottom contact: carbon quantum dots embedded SnO2 electron transport layer for high- performance and stable perovskite solar cells. Mat. Today Phys., 101041(2023).

    [11] W HU, W ZHOU, X LEI et al. Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv. Mater., 31, 1806095(2019).

    [12] Z JIANG, Z HE, S MA et al. Effect of yttrium-incorporated TiO2 electron transport layer on the photovoltaic performance of triple- cation perovskite solar cells. J. Phys. Chem. C, 127, 19432(2023).

    [13] J HE, T DING, W WU. Surface lattice perturbation of electron transport layer reducing oxygen vacancies for positive photovoltaic effect. Sol. RRL, 6, 2200226(2022).

    [14] S LI, Y YANG, K SU et al. Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells. Chin. J. Chem. Eng., 29(2022).

    [15] S YOU, H ZENG, Z KU et al. Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater., 32, 2003990(2020).

    [16] L LIN, T W JONES, T C J YANG et al. Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater., 31, 2008300(2021).

    [17] T BU, J LI, F ZHENG et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun., 9, 4609(2018).

    [18] H B LEE, M K JEON, N KUMAR et al. Boosting the efficiency of SnO2-triple cation perovskite system beyond 20% using nonhalogenated antisolvent. Adv. Funct. Mater., 29, 1903213(2019).

    [19] P F MÉNDEZ, S K M MUHAMMED, E M BAREA et al. Analysis of the UV-Ozone-treated SnO2 electron transporting layer in planar perovskite solar cells for high performance and reduced hysteresis. Sol. RRL, 3, 1900191(2019).

    [20] J ZHOU, R ZHOU, J ZHU et al. Colloidal SnO2-assisted CdS electron transport layer enables efficient electron extraction for planar perovskite solar cells. Sol. RRL, 5, 2100494(2021).

    [21] H LIU, Z CHEN, H WANG et al. A facile room temperature solution synthesis of SnO2 quantum dots for perovskite solar cells. J. Mater. Chem. A, 7, 10636(2019).

    [22] K K SONG, X P ZOU, H Y ZHANG et al. Effect of SnO2 colloidal dispersion solution concentration on the quality of perovskite layer of solar cells. Coatings, 11, 591(2021).

    [23] BAENA J P CORREA, L STEIER, W TRESS et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci., 8, 2928(2015).

    [24] E H ANARAKI, A KERMANPUR, M T MAYER et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett., 3, 773(2018).

    [25] B DING, S Y HUANG, Q Q CHU et al. Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A, 6, 10233(2018).

    [26] T BU, X LIU, Y ZHOU et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci., 10, 2509(2017).

    [27] C WU, W FANG, Q CHENG et al. MXene-regulated perovskite vertical growth for high-performance solar cells. Angew. Chem. Int. Ed., 61, e202210970(2022).

    [28] Y ZOU, J EICHHORN, S RIEGER et al. Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells. Nano Energy, 108449(2023).

    [29] J DOU, C ZHU, H WANG et al. Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater., 33, 2102947(2021).

    Tools

    Get Citation

    Copy Citation Text

    Suolan LIU, Fuyuan LUAN, Zihua WU, Chunhui SHOU, Huaqing XIE, Songwang YANG. In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1397

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 18, 2024

    Accepted: --

    Published Online: Jan. 21, 2025

    The Author Email: YANG Songwang (swyang@mail.sic.ac.cn)

    DOI:10.15541/jim20240202

    Topics