Chinese Journal of Quantum Electronics, Volume. 42, Issue 1, 70(2025)
Performance optimization of quantum Otto cycle via deep reinforcement learning
[1] Prielinger L, Hartmann A, Yamashiro Y et al. Two-parameter counter-diabatic driving in quantum annealing[J]. Physical Review Research, 3, 013227(2021).
[2] Guéry-Odelin D, Ruschhaupt A, Kiely A et al. Shortcuts to adiabaticity: Concepts, methods, and applications[J]. Reviews of Modern Physics, 91, 045001(2019).
[3] Hegade N N, Paul K, Ding Y C et al. Shortcuts to adiabaticity in digitized adiabatic quantum computing[J]. Physical Review Applied, 15, 024038(2021).
[4] Iram S, Dolson E, Chiel J et al. Controlling the speed and trajectory of evolution with counterdiabatic driving[J]. Nature Physics, 17, 135-142(2021).
[5] Patra A, Jarzynski C. Semiclassical fast-forward shortcuts to adiabaticity[J]. Physical Review Research, 3, 013087(2021).
[6] Abah O, Paternostro M, Lutz E. Shortcut-to-adiabaticity quantum Otto refrigerator[J]. Physical Review Research, 2, 023120(2020).
[7] Dupays L, Egusquiza I L, del Campo A et al. Superadiabatic thermalization of a quantum oscillator by engineered dephasing[J]. Physical Review Research, 2, 033178(2020).
[8] Funo K, Lambert N, Karimi B et al. Speeding up a quantum refrigerator via counterdiabatic driving[J]. Physical Review B, 100, 035407(2019).
[9] Li L N, Li H, Yu W L et al. Shortcut-to-adiabaticity quantum tripartite Otto cycle[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 54, 215501(2021).
[10] Hartmann A, Mukherjee V, Niedenzu W et al. Many-body quantum heat engines with shortcuts to adiabaticity[J]. Physical Review Research, 2, 023145(2020).
[11] Zhang X M, Wei Z Z, Asad R et al. When does reinforcement learning stand out in quantum control? A comparative study on state preparation[J]. npj Quantum Information, 5, 85(2019).
[12] He R H, Wang R, Nie S S et al. Deep reinforcement learning for universal quantum state preparation via dynamic pulse control[J]. EPJ Quantum Technology, 8, 29(2021).
[13] Sgroi P, Palma G M, Paternostro M. Reinforcement learning approach to nonequilibrium quantum thermodynamics[J]. Physical Review Letters, 126, 020601(2021).
[14] Khait I, Carrasquilla J, Segal D. Optimal control of quantum thermal machines using machine learning[J]. Physical Review Research, 4, L012029(2022).
[15] Erdman P A, Noé F. Identifying optimal cycles in quantum thermal machines with reinforcement-learning[J]. npj Quantum Information, 8, 1(2022).
[16] Plastina F, Alecce A, Apollaro T et al. Irreversible work and inner friction in quantum thermodynamic processes[J]. Physical Review Letters, 113, 260601(2014).
[17] Ahmadi B, Salimi S, Khorashad A S. Irreversible work and Maxwell demon in terms of quantum thermodynamic force[J]. Scientific Reports, 11, 2301(2021).
[18] Sivak V V, Eickbusch A, Liu H et al. Model-free quantum control with reinforcement learning[J]. Physical Review X, 12, 011059(2022).
Get Citation
Copy Citation Text
Jiansong LI, Hai LI, Wenli YU, Yaming HAO. Performance optimization of quantum Otto cycle via deep reinforcement learning[J]. Chinese Journal of Quantum Electronics, 2025, 42(1): 70
Category:
Received: Feb. 6, 2023
Accepted: --
Published Online: Mar. 13, 2025
The Author Email: LI Jiansong (ljs1019@foxmail.com)