Journal of Synthetic Crystals, Volume. 52, Issue 8, 1491(2023)
Effect of High-Valence State W Doping on the Catalytic Activity of NiFe Phosphides for Overall Water Splitting
[1] [1] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2017, 16(1): 16-22.
[2] [2] ZHANG N, FENG X B, RAO D W, et al. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation[J]. Nature Communications, 2020, 11(1): 1-11.
[3] [3] LIANG J H, TAN H R, LIU M, et al. A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(43): 16841-16848.
[4] [4] WANG M J, SHI B, ZHANG Q X, et al. Integrated and unassisted solar water-splitting system by monolithic perovskite/silicon tandem solar cell[J]. Solar RRL, 2022, 6(2): 2100748.
[6] [6] KIM J H, HANSORA D, SHARMA P, et al. Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge[J]. Chemical Society Reviews, 2019, 48(7): 1908-1971.
[7] [7] URBAIN F, SMIRNOV V, BECKER J P, et al. Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting[J]. Energy & Environmental Science, 2016, 9(1): 145-154.
[8] [8] WHITE R T, KUMAR B, KUMARI S, et al. Simulations of non-monolithic tandem solar cell configurations for electrolytic fuel generation[J]. Journal of Materials Chemistry A, 2017, 5(25): 13112-13121.
[9] [9] SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214.
[10] [10] CHUNG D Y, LOPES P P, FARINAZZO BERGAMO DIAS MARTINS P, et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction[J]. Nature Energy, 2020, 5(3): 222-230.
[11] [11] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365.
[12] [12] HOU S J, KLUGE R M, HAID R W, et al. A review on experimental identification of active sites in model bifunctional electrocatalytic systems for oxygen reduction and evolution reactions[J]. ChemElectroChem, 2021, 8(18): 3433-3456.
[13] [13] ANANTHARAJ S, EDE S R, SAKTHIKUMAR K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review[J]. ACS Catalysis, 2016, 6(12): 8069-8097.
[14] [14] LIU P, RODRIGUEZ J A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect[J]. Journal of the American Chemical Society, 2005, 127(42): 14871-14878.
[15] [15] HU J, ZHANG C X, JIANG L, et al. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media[J]. Joule, 2017, 1(2): 383-393.
[16] [16] XU J Y, LI J J, XIONG D H, et al. Trends in activity for the oxygen evolution reaction on transition metal (M=Fe, Co, Ni) phosphide pre-catalysts[J]. Chemical Science, 2018, 9(14): 3470-3476.
[17] [17] XIAO H, SHIN H, GODDARD W A Ⅲ. Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23): 5872-5877.
[20] [20] ZHANG B, ZHENG X, VOZNYY O, et al. Homogeneously dispersed, multimetal oxygen-evolving catalysts [J]. Science, 2016, 352(6283): 333-337.
[21] [21] ZHANG B, WANG L, CAO Z, et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics[J]. Nature Catalysis, 2020, 3(12): 985-992.
[22] [22] WANG K X, WANG X Y, LI Z J, et al. Designing 3 d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: beyond oxides[J]. Nano Energy, 2020, 77: 105162.
[23] [23] DING L, LI K, XIE Z Q, et al. Constructing ultrathin W-doped NiFe nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20070-20080.
[24] [24] LI L, CAO X J, HUO J J, et al. High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis[J]. Journal of Energy Chemistry, 2023, 76: 195-213.
[25] [25] KHODABAKHSHI M, CHEN S M, YE T, et al. Hierarchical highly wrinkled trimetallic NiFeCu phosphide nanosheets on nanodendrite Ni3S2/Ni foam as an efficient electrocatalyst for the oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36268-36276.
[26] [26] ZHANG D D, SOO J Z, TAN H H, et al. Earth-abundant amorphous electrocatalysts for electrochemical hydrogen production: a review[J]. Advanced Energy and Sustainability Research, 2021, 2(3): 2000071.
[27] [27] ZHU J J, VASILOPOULOU M, DAVAZOGLOU D, et al. Intrinsic defects and H doping in WO3[J]. Scientific Reports, 2017, 7(1): 1-9.
[28] [28] ZHANG Q X, LI T T, LIANG J H, et al. Highly wettable and metallic NiFe-phosphate/phosphide catalyst synthesized by plasma for highly efficient oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(17): 7509-7516.
[29] [29] WU B, GONG S, LIN Y C, et al. A unique NiOOH@FeOOH heteroarchitecture for enhanced oxygen evolution in saline water[J]. Advanced Materials, 2022, 34(43): 2108619.
[30] [30] LUAN X Q, DU H T, KONG Y, et al. A novel FeS-NiS hybrid nanoarray: an efficient and durable electrocatalyst for alkaline water oxidation[J]. Chemical Communications, 2019, 55(51): 7335-7338.
[31] [31] FAN R L, CHENG S B, HUANG G P, et al. Unassisted solar water splitting with 9.8% efficiency and over 100 h stability based on Si solar cells and photoelectrodes catalyzed by bifunctional Ni-Mo/Ni[J]. Journal of Materials Chemistry A, 2019, 7(5): 2200-2209.
Get Citation
Copy Citation Text
ZHANG Yiqing, LIANG Junhui, FAN Haoyang, CHEN Da, CHEN Huayu, HUANG Yuexiang, YAO Xin, QIN Laishun. Effect of High-Valence State W Doping on the Catalytic Activity of NiFe Phosphides for Overall Water Splitting[J]. Journal of Synthetic Crystals, 2023, 52(8): 1491
Category:
Received: Feb. 28, 2023
Accepted: --
Published Online: Oct. 28, 2023
The Author Email: Yiqing ZHANG (269381063@qq.com)
CSTR:32186.14.