Study On Optical Communications, Volume. 51, Issue 1, 230165-01(2025)
Recent Progress in Simplified Coherent Technology
[1] Yue T L, Zhu B, Miao Y C et al. Research Progress of Server Power Consumption Model in Data Center[J]. Intelligent Computer and Applications, 13, 17-24(2023).
[2] Perin J K, Shastri A, Kahn J. Coherent Data Center Links[J]. Journal of Lightwave Technology, 39, 730-741(2021).
[3] Hirokawa T, Pinna S, Hosseinzadeh N et al. Analog Coherent Detection for Energy Efficient Intra-data Center Links at 200 Gbps per Wavelength[J]. Journal of Lightwave Technology, 39, 520-531(2021).
[4] Liao C F, Liu S I. 40 Gb/s Transimpedance-AGC Amplifier and CDR Circuit for Broadband Data Receivers in 90 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 43, 642-655(2008).
[5] Lu M, Park H C, Bloch E et al. An Integrated 40 Gbit/s Optical Costas Receiver[J]. Journal of Lightwave Technology, 31, 2244-2253(2013).
[6] Lu M, Park H C, Bloch E et al. Highly Integrated Homodyne Receiver for Short-reach Coherent Communication[C], OT2A. 4(2015).
[7] Valenzuela L A, Xia Y, Maharry A et al. A 50-GBaud QPSK Optical Receiver with a Phase/Frequency Detector for Energy-efficient Intra-data Center Interconnects[J]. IEEE Open Journal of the Solid-State Circuits Society, 2, 50-60(2022).
[8] Xia Y, Valenzuela L, Maharry A et al. A Fully Integrated O-band Coherent Optical Receiver Operating up to 80 Gb/s[C], 9592881(2021).
[9] Raveendranath R K, Nambath N, Gupta S. Frequency Detector for Carrier Phase Synchronization in 50 Gbps QPSK Receiver in Analog Domain[C], 7230766(2015).
[10] Rideout H R, Seregelyi J S, Paquet S et al. Discriminator-aided Optical Phase-lock Loop Incorporating a Frequency Down-conversion Module[J]. IEEE Photonics Technology Letters, 18, 2344-2346(2006).
[11] Nambath N, Gupta A, Gupta S. A Low Power 100 Gbps DP-QPSK Receiver Using Analog Domain Signal Processing[C], 470-473(2013).
[12] Nambath N, Gupta S. Low Power Terabit /Second Optical Interconnects for Data Centers[C], 6983991(2014).
[13] Choutagunta K, Kahn J M. Dynamic Channel Modeling for Mode-division Multiplexing[J]. Journal of Lightwave Technology, 35, 2451-2463(2017).
[14] Bulow H, Baumert W, Schmuck H et al. Measurement of the Maximum Speed of PMD Fluctuation in Installed Field Fiber[C], 766343(1999).
[15] Noe R, Heidrich H, Hoffmann D. Endless Polarization Control Systems for Coherent Optics[J]. Journal of Lightwave Technology, 6, 1199-1208(1988).
[16] Walker N G, Walker G R. Endless Polarisation Control Using Four Fibre Squeezers[J]. Electronics Letters, 23, 290-292(1987).
[17] Heidrich H, von Helmolt C H, Hoffmann D et al. Polarisation Transformer on Ti: LiNbO3 with Reset-free Optical Operation for Heterodyne/Homodyne Receivers[J]. Electronics Letters, 23, 335(1987).
[18] Perin J K, Shastri A, Kahn J M. Design of Low-power DSP-free Coherent Receivers for Data Center Links[J]. Journal of Lightwave Technology, 35, 4650-4662(2017).
[19] Nambath N, Ashok R, Manikandan S et al. All-analog Adaptive Equalizer for Coherent Data Center Interconnects[J]. Journal of Lightwave Technology, 38, 5867-5874(2020).
[20] Nambath N, Raveendranath R K, Banerjee D et al. Analog Domain Signal Processing-based Low-power 100-Gb/s DP-QPSK Receiver[J]. Journal of Lightwave Technology, 33, 3189-3197(2015).
[21] Wu M, Cornett F. Discrete-time and Continuous-time Constant Modulus Algorithm Analysis[C], 390530(1995).
[22] Razavi B[M]. Design of Analog CMOS Integrated Circuits(2000).
[23] Sheng K, Niu H, Zhang B et al. A 4.6-pJ/b 200-Gb/s Analog DP-QPSK Coherent Optical Receiver in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 58, 45-56(2023).
[24] Kong L Q, Bu Q L. Research and Application of Quasi-coherent Technology in C-band 25 Gbit/s Optical Transceiver[J]. Study on Optical Communications, 36-41(2021).
[25] Granja A B, Cimoli B, Rodríguez S et al. Ultra-wideband Balanced Schottky Envelope Detector for Data Communication with High Bitrate to Carrier Frequency Ratio[C], 8059074(2017).
[26] Cimoli B, Valdecasa G S, Granja A B et al. An Ultra-wideband Schottky Diode based Envelope Detector for 2.5 Gbps Signals[C], 7824332(2016).
[27] Cimoli B, Páez J S R, Turhaner A et al. Active HEMT based Envelope Detector for Ultra-wideband Wireless Communication Systems[C], 8439661(2018).
[28] Thome F, Maroldt S, Ambacher O. Novel Destructive-interference-envelope Detector for High Data Rate ASK Demodulation in Wireless Communication Receivers[C], 7166805(2015).
[29] Thome F, Maroldt S, Schlechtweg M et al. A Low-power W-band Receiver MMIC for Amplitude Modulated Wireless Communication up to 24 Gbit/s[C], 7067668(2014).
[30] Song H J, Ajito K, Muramoto Y et al. 24 Gbit/s Data Transmission in 300 GHz Band for Future Terahertz Communications[J]. Electronics Letters, 48, 953(2012).
[31] Mecozzi A, Antonelli C, Shtaif M. Kramers-Kronig Coherent Receiver[J]. Optica, 3, 1220(2016).
[32] Zhu Y, Zou K, Ruan X et al. Single Carrier 400G Transmission with Single-ended Heterodyne Detection[J]. IEEE Photonics Technology Letters, 29, 1788-1791(2017).
[33] Füllner C, Adib M M H, Wolf S et al. Complexity Analysis of the Kramers-Kronig Receiver[J]. Journal of Lightwave Technology, 37, 4295-4307(2019).
[34] Chen X, Antonelli C, Chandrasekhar S et al. Kramers-Kronig Receivers for 100-km Datacenter Interconnects[J]. Journal of Lightwave Technology, 36, 79-89(2018).
[35] Fan S, Zhuge Q, Xing Z et al. 264 Gb/s Twin-SSB-KK Direct Detection Transmission Enabled by MIMO Processing[C], 8386169(2018).
[36] Li Z, Erkilinç M S, Shi K et al. Spectrally Efficient 168 Gb/s/λ WDM 64-QAM Single-sideband Nyquist-subcarrier Modulation with Kramers-Kronig Direct-detection Receivers[J]. Journal of Lightwave Technology, 36, 1340-1346(2018).
[37] Shu L, Li J, Wan Z et al. Single-lane 112-Gbit/s SSB-PAM4 Transmission with Dual-drive MZM and Kramers-Kronig Detection over 80-km SSMF[J]. IEEE Photonics Journal, 9, 7204509(2017).
[38] Kim H, Winzer P J. Robustness to Laser Frequency Offset in Direct-detection DPSK and DQPSK Systems[J]. Journal of Lightwave Technology, 21, 1887-1891(2003).
[39] Pawula R F. Distribution of the Phase Angle between Two Vectors Perturbed by Gaussian Noise II[J]. IEEE Transactions on Vehicular Technology, 50, 576-583(2001).
Get Citation
Copy Citation Text
Shan HU, Wei LI, Yingmei PAN, Tao ZENG, Ming LUO, Huang YU, Hao GUO. Recent Progress in Simplified Coherent Technology[J]. Study On Optical Communications, 2025, 51(1): 230165-01
Category:
Received: Nov. 10, 2023
Accepted: --
Published Online: Feb. 24, 2025
The Author Email: ZENG Tao (zengtao@wri.com.cn)