Laser & Optoelectronics Progress, Volume. 53, Issue 7, 70004(2016)

Progress in Black Silicon Infrared Detectors

Li Wei*, Wang Yu, and Wu Tengfei
Author Affiliations
  • [in Chinese]
  • show less
    References(30)

    [1] [1] Cheng Kaifu. Recent development of silicon based IRFPA technology(I)[J]. Semiconductor Information, 1997, 34(6): 20-28.

    [2] [2] Her T H, Finlay R J, Wu C, et al.. Microstructuring of silicon with femtosecond laser pulses[J]. Appl Phys Lett, 1998, 73(12): 1673-1675.

    [3] [3] Wu C, Crouch C H, Zhao L, et al.. Near-unity below-band-gap absorption by microstructured silicon[J]. Appl Phys Lett, 2001, 78(13): 1850-1852.

    [4] [4] Sher M J, Winkler M T, Mazur E. Pulsed-laser hyperdoping and surface texturing for photovoltaics[J]. MRS Bulletin, 2011, 36(6): 439-445.

    [5] [5] Ertekin E, Winkler M T, Recht D, et al.. Insulator-to-metal transition in selenium-hyperdoped silicon: Observation and origin[J]. Phys Rev Lett, 2012, 108(2): 026401.

    [6] [6] Shao H, Li Y, Zhang J, et al.. Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon[J]. EPL, 2012, 99(4): 46005.

    [7] [7] Hu S X, Han P D, Wang S, et al.. Improved photoresponse characteristics in Se-doped Si photodiodes fabricated using picosecond pulsed laser mixing[J]. Semicond Sci Technol, 2012, 27(10): 102002.

    [8] [8] Savin H, Repo P, Gastrowvon G, et al.. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency[J]. Nature Nanotechnology, 2015, 10(7): 624-628.

    [9] [9] Su Y, Li S, Wu Z, et al.. High responsivity MSM black silicon photodetector[J]. Mater Sci Semicond Process, 2013, 16(3): 619-624.

    [10] [10] Zhong S, Liu B, Xia Y, et al.. Influence of the texturing structure on the properties of black silicon solar cell[J]. Sol Energy Mater Sol Cells, 2013, 108: 200-204.

    [11] [11] Said A J, Recht D, Sullivan J T, et al.. Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes[J]. Appl Phys Lett, 2011, 99(7): 073503.

    [13] [13] Carey J E, Crouch C H, Shen M, et al.. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes[J]. Opt Lett, 2005, 30(14): 1773-1775.

    [14] [14] Huang Z H, Carey J E, Liu M G, et al.. Microstructured silicon photodetector[J]. Appl Phys Lett, 2006, 89(3): 033506.

    [15] [15] Tabbal M, Boldman R S, Kim T, et al.. Formation of single crystal sulfur supersaturated silicon based junctions by pulsed laser melting[J]. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2007, 25(6): 1847-1852.

    [16] [16] Su Y F, Jiang Y D, Wu Z M, et al.. Spectral response of metal-semiconductor-metal photodetector based on black silicon[J]. Energy Procedia, 2011, 12: 615-619.

    [17] [17] Wang Xiyuan, Huang Yongguang, Liu Dewei, et al.. Fabrication of tellurium doped silicon detector by femtosecond laser and excimer laser[J]. Chinese J Lasers, 2013, 40(3): 0302001.

    [18] [18] Wang X Y, Huang Y G, Liu D W, et al.. High response in a tellurium supersaturated silicon photodiode[J]. Chin Phys Lett, 2013, 30(3): 036101.

    [19] [19] Wang C, Jiang J, Zhang C G, et al.. Influence of two-tier structuring on the performance of black silicon-based MSM photodetectors[J]. J Mater Sci: Mater Electron, 2014, 25(3): 1542-1546.

    [20] [20] Mailoa J P, Akey A J, Simmons C B, et al.. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon[J]. Nature Communications, 2014, 5: 3011.

    [21] [21] Hemme E G, Hernansanz R G, Olea J, et al.. Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector[J]. Appl Phys Lett, 2014, 104(21): 211105.

    [22] [22] Sher M J, Mazur E. Intermediate band conduction in femtosecond-laser hyperdoped silicon[J]. Appl Phys Lett, 2014, 105(3): 032103.

    [23] [23] Iyengar V V, Nayak B K, More K L, et al.. Properties of ultrafast laser textured silicon for photovoltaics[J]. Sol Energy Mater Sol Cells, 2011, 95(10): 2745-2751.

    [24] [24] Cao Liping, Chen Zhandong, Wu Qiang, et al.. Effect of annealing on transient photoluminescence properties of microstructured black silicon[J]. Acta Optica Sinica, 2015, 35(5): 0530001.

    [25] [25] Dong X, Li N, Zhu Z, et al.. A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation[J]. Appl Phys Lett, 2014, 104(9): 091907.

    [26] [26] Lü Zhenhua. Fabrication and investigation of black silicon of enhanced near-infrared absorption[D]. Changchun: Jilin University, 2013.

    [27] [27] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Material, 2002, 1(4): 217-224.

    [28] [28] Feng Z Z, Jia R, Dou B F, et al.. Fabrication and properties of ZnO nanorods within silicon nanostructures for solar cell application[J]. Appl Phys Lett, 2015, 106(5): 053118.

    [30] [30] Mei Hao. Black silicon photodetector and its application on bi-wavelength laser fuze[J]. Guidance & Fuze, 2013, 34(1): 1-5.

    CLP Journals

    [1] Gao Xiuyun, Zhang Ye, Cui Yanxia, Liu Yanzhen, Li Guohui, Shi Linlin, Hao Yuying. Research Progress in Organic Photomultiplication Photodetector[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70001

    Tools

    Get Citation

    Copy Citation Text

    Li Wei, Wang Yu, Wu Tengfei. Progress in Black Silicon Infrared Detectors[J]. Laser & Optoelectronics Progress, 2016, 53(7): 70004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 13, 2016

    Accepted: --

    Published Online: Jul. 8, 2016

    The Author Email: Wei Li (livy09@163.com)

    DOI:10.3788/lop53.070004

    Topics