Acta Photonica Sinica, Volume. 51, Issue 8, 0851504(2022)
Progress in Luminescent Materials for Anti-counterfeiting Labels(Invited)
[1] HOU Jue, LI Mingzhu, SONG Yanlin. Patterned colloidal photonic crystals[J]. Angewandte Chemie-International Edition, 57, 2544-2553(2018).
[4] SMITH A F, SKRABALAK S E. Metal nanomaterials for optical anti-counterfeit labels[J]. Journal of Materials Chemistry C, 5, 3207-3215(2017).
[5] WU Youfusheng, WU Wei. Combinations of superior inorganic phosphors for level-tunable information hiding and encoding[J]. Advanced Optical Materials, 9, 2100281(2021).
[6] TSANG Mingkiu, BAI Gongxun, HAO Jianhua. Stimuli-responsive upconversion luminescence nanomaterials and films for various applications[J]. Chemical Society Reviews, 44, 1585-1607(2015).
[7] LIU Wenjing, ZHANG Wenjun, LI Guojing et al. Dual mode emissions with enhanced green up-conversion luminescence by Gd3+ doping and down-conversion from Eu3+ in NaMnF3:Yb,Er@NaGdF4:Eu[J]. Dalton Transactions, 50, 10243-10251(2021).
[8] LIU Xiaowang, JI Qiang, HU Qiyan et al. Dual-mode long-lived luminescence of Mn2+-doped nanoparticles for multilevel anti-counterfeiting[J]. ACS Applied Materials & Interface, 11, 30146-30153(2019).
[9] HUA Yongbin, YU Jaesu. Dual-functional platforms toward field emission displays and novel anti-counterfeiting strategy based on rare-earth activated materials[J]. Ceramics International, 47, 18003-18011(2021).
[10] WANG Shaoxiong, LIN Jidong, LI Xiaoyan et al. Glass-limited Yb/Er:NaLuF4 nanocrystals: reversible hexagonal-to-cubic phase transition and anti-counterfeiting[J]. Journal of Materials Chemistry C, 8, 16151-16159(2020).
[11] XU Leimeng, CHEN Jiawei, SONG Jizhong et al. Double protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-moddal anti-counterfeiting codes[J]. ACS Applied Materials & Interface, 9, 26556-26564(2017).
[12] LI Xiaowan, HU Yingcheng. Luminescent films functionalized with cellulose nanofibrils/CdTe quantum dots for anti-counterfeiting applications[J]. Carbohydrate Polymers, 203, 167-175(2019).
[13] CHEN Xi, WANG Qi, WANG Xiaojun et al. Synthesis and performance of ZnO quantum dots water-based fluorescent ink for anti-counterfeiting applications[J]. Scientific Reports, 11, 5841(2021).
[14] ZHENG Xin, ZHU Yangbin, LIU Yang et al. Inkjet-printed quantum dot fluorescent security labels with triple-level optical encryption[J]. ACS Applied Materials & Interfaces, 13, 15701-15708(2021).
[15] GEORGAKILAS V, PERMAN J A, TUCEK J et al. Broad family of carbon nanoallotropes: Classification, chemistry and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures[J]. Chemical Review, 115, 4744-4822(2015).
[16] MUTHAMMA K, SUNIL D, SHETTY P. Carbon dots as emerging luminophores in security inks for anti-counterfeiting applications-An up-to-data review[J]. Applied Materials Today, 23, 101050(2021).
[17] JIANG Kai, WANG Yuhui, LI Zhongjun et al. Afterglow of carbon dots: mechanism, strategy and applications[J]. Materials Chemistry Frontiers, 4, 386-399(2019).
[18] BAKER S N, BAKER G A. Luminescent carbon nanodots: emergent nanolights[J]. Angewwandte Chemie International Edition, 49, 6726-6744(2010).
[19] HAZRA A, MONDAL U, MANDAL S et al. Advancement in functionalized luminescent frameworks and their prospective applications as inkjet-printed sensors and anti-counterfeit materials[J]. Dalton Transactions, 50, 8657-8670(2021).
[20] YIN Huaqing, YIN Xuebo. Multi-emission from single metal-organic frameworks under single excitation[J]. Small, 18, 2106587(2022).
[21] JAKUBOWSKI K, HUANG C S, BOESEL L F et al. Recent advances in photoluminescent polymer optical fibers[J]. Current Opinion in Solid State & Materials Science, 25, 100912(2021).
[22] AHANGER F A, NAZIR N, LONE M S et al. Emission color tuning and white light generation from a trimolecular cocktail in cationic micellar system with promising applicability in the anticounterfeiting technology[J]. Langmuir, 37, 7730-7740(2021).
[23] BHAUMIK S K, BISWAS R, BANERJEE S. Cucurbituril based luminescent materials in aqueous media and solid state[J]. Chemistry-An Asian Journal, 16, 2195-2210(2021).
[24] NAWAZ H, ZHANG Xun, CHEN Sheng et al. Recent studies on cellulose-based fluorescent smart materials and their applications: A comprehensive review[J]. Carbohydrate Polymers, 267, 118135(2021).
[25] YOON Bora, LEE Jung, PARK In Sung et al. Recent functional material based approaches to prevent and detect counterfeiting[J]. Journal of Materials Chemistry C, 1, 2388-2403(2013).
[26] HAN Jiangli, FENG Wenhui, MULETA Yadeta et al. Small-molecule-doped organic crystals with long-persistent luminescence[J]. Advanced Functional Materials, 29, 1902503(2019).
[27] WANG Huarui, YANG Xiaogang, QIN Jianhua et al. Long-lived room temperature phosphorescence of organic-inorganic hybrid systems[J]. Inorganic Chemistry Frontiers, 8, 1942-1950(2021).
[28] LI Mengxiao, YAO Weijing, LIU Jun et al. Facile synthesis and screen printing dual-mode luminescent materials of NaYF4:Er, Yb(Tm)/carbon dots for anti-counterfeiting applications[J]. Journal of Materials Chemistry C, 5, 6512-6520(2017).
[29] GONG Liaokuo, HUANG Fuquan, ZHANG Zhizhuan et al. Multimode dynamic luminescent switching of lead halide hybrids for anti-counterfeiting and encryption[J]. Chemical Engineering Journal, 424, 130544(2021).
[30] LIU Xin, XU Yinsheng, LIU Qianqian et al. 8-Hydroxyquinoline and Eu3+ incorporated metal-organic framework nanosystems with tunable emissions for white light and anticounterfeiting applications[J]. ACS Applied Nano Materials, 4, 313-321(2021).
[31] GUPTA S K, SUDARSHAN K, KADAM R M. Optical nanomaterials with focus on rare earth doped oxide: A review[J]. Materials Today Communications, 27, 102277(2021).
[32] ZHANG Hongyue, WANG Bolun, YU Xiaowei et al. Carbon dots in porous materials: host-guest synergy for enhanced performance[J]. Angewandte Chemie International Edition, 59, 19390-19402(2020).
[33] AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chemical Reviews, 104, 139-173(2004).
[34] YAO Weijing, TIAN Qingyong, WU Wei. Tunable emissions of upconversion fluorescence for security applications[J]. Advanced Optical Materials, 7, 1801171(2019).
[35] SHI Chaoshu, QI Zeming. New development of long afterglow phosphorescent materials[J]. Journal of Inorganic Materials, 19, 961-969(2004).
[36] YANG Huanxin, ZHAO Weiren, SONG Enhai et al. Highly flexible dual-mode anti-counterfeiting design based on tunable multi-band emissions and afterglow from chromium doped aluminates[J]. Journal of Materials Chemistry C, 8, 16533-16541(2020).
[37] SANG Jika, ZHOU Jinyu, ZHANG Jiachi et al. Multi-leveled static-dynamic anticounterfeiting based on the stimuli-responsive luminescence in a niobate structure[J]. ACS Applied Materials & Interfaces, 11, 20150-20156(2019).
[38] FAN Xiaotong, LIU Zhichao, YANG Xiuxia et al. Recent developments and progress of inorganic photo-stimulated phosphors[J]. Journal of Rare Earths, 37, 679-690(2019).
[39] GAO Wenxing, GE Wanyin, SHI Jindou et al. Stretchable, flexible, and transparent SrAl2O4:Eu2+@TPU ultraviolet stimulated anti-counterfeiting film[J]. Chemical Engineering Journal, 405, 126949(2021).
[40] YUAN L F, JIN Y H, SU Y et al. Optically stimulated luminescence phosphors: Principles, applications, and prospects[J]. Laser & Photonics Reviews, 14, 2000123(2020).
[41] WU Chen, ZENG Songshan, WANG Zhaofeng et al. Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility[J]. Advanced Functional Materials, 28, 1803168(2018).
[42] YANG Yunling, LI Qianli, YANG Xuechun et al. Color manipulation from Bi3+-activated CaZnOS under stress with ultra-high efficiency and low threshold for multiple anticounterfeiting[J]. Journal of Materials Chemistry C, 8, 3308-3315(2020).
[43] MA Zhidong, ZHOU Jinyu, ZHANG Jiachi et al. Mechanics induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence[J]. Materials Horizons, 6, 2003-2008(2019).
[44] LU Zihan, TANG Jin, DU Peng et al. Multilevel luminescence of Er3+/Pr3+ co-doped Ca2Nb2O7 ceramics and composite films for optical anti-counterfeiting[J]. Ceramics International, 47, 8248-8255(2021).
[45] YANG Yunling, YANG Xuechun, YUAN Jiayong et al. Time-resolved bright red to cyan color tunable mechanoluminescence from CaZnOS:Bi3+, Mn2+ for anti-counterfeiting device and stress sensor[J]. Advanced Optical Materials, 9, 2100668(2021).
[46] CHANG Kai, LI Qianqian, LI Zhen. Advances in mechanoluminescence and its applications[J]. Chinese Journal of Organic Chemistry, 40, 3656-3671(2020).
[47] JIANG Kai, WANG Yuhui, LI Zhongjun et al. Afterglow of carbon dots: mechanism, strategy and applications[J]. Materials Chemistry Frontiers, 4, 386-399(2019).
[48] LIN Cunjian, ZHUANG Yixi, LI Wuhui et al. Blue, green, and full-color ultralong afterglow in nitrogen-doped carbon dots[J]. Nanoscale, 11, 6584-6590(2019).
[49] ZHANG Jingyu, XU Shen, WANG Zijie et al. Stimuli-responsive deep-blue organic ultralong phosphorescence with lifetime over 5 s for reversible water-jet anti-counterfeiting printing[J]. Angewandte Chemie- International Edition, 60, 17094-17101(2021).
[50] LEI Yunxiang, DAI Wenbo, GUAN Jianxin et al. Wide-range color-tunable ultralong organic phosphorescence materials for printable and writable security inks[J]. Angewandte Chemie-International Edition, 59, 16054-16060(2020).
[51] TIAN Shuyu, ZHANG Hao, YANG Xiuxia et al. A dynamic three-path authenticating model for anti-counterfeiting in a single host of CaAl2Si2O8[J]. Chemical Engineering Journal, 412, 128695(2021).
[52] PEI Pengxiang, WEI Ruiping, WANG Binbin et al. An advanced tunable multimodal luminescent La4GeO8:Eu2+, Er3+ phosphor for multicolor anticounterfeiting[J]. Advanced Functional Materials, 31, 2102479(2021).
[53] YING Weitao, NIE Jingheng, FAN Xuemei et al. Dual-wavelength responsive broad range multicolor upconversion luminescence for high-capacity photonic barcodes[J]. Advanced Optical Materials, 9, 2100197(2021).
[54] KUMAR P, DWIVEDI J, GUPTA B K. Highly-luminescent dual mode rare-earth nanorods assisted multi-stage excitable security ink for anti-counterfeiting applications[J]. Journal of Materials Chemistry C, 2, 10468-10475(2014).
[55] WANG Xiaoni, LI Ting, LIANG Wenchao et al. Triple NIR light excited up-conversion luminescence in lanthanide-doped BaTiO3 phosphors for anti-counterfeiting[J]. Journal of the American Ceramic Society, 104, 5826-5836(2021).
[56] TAN Meiling, LI Feng, WANG Xing et al. Temporal multilevel luminescence anti-counterfeiting through scattering media[J]. ACS Nano, 14, 6532-6538(2020).
[57] HUANG Hai, CHEN Jiangkun, LIU Yutong et al. Lanthanide-doped cor@multishell nanoarchitectures: Multimodal excitable upconverting/downshifting luminescence and high-level anti-counterfeiting[J]. Small, 16, 2000708(2020).
[58] ZHANG Juncheng, PAN Cong, ZHU Yifei et al. Achieving thermos-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting[J]. Advanced Materials, 30, 1804644(2018).
[59] ZHAO Shanshan, WANG Zhenbin, MA Zhidong et al. Achieving multimodal emission in Zn4B6O13:Tb3+, Yb3+ for information encryption and anti-counterfeiting[J]. Inorganic Chemistry, 59, 15681-15689(2020).
[60] GONZALEZ J M, MORALES A A, MEZA O et al. An anti-counterfeiting strategy based on thermochromic pigment activated by highly Yb3+ doped photothermal particles[J]. Journal of Alloys and Compounds, 850, 156709(2021).
[61] WANG Shuxian, ZHANG Jinpu, YE Zhengmao et al. Exploiting novel optical thermometry near room temperature with a combination of phase-change host and luminescent Pr3+ ion[J]. Chemical Engineering Journal, 414, 128884(2021).
[62] LIN Jinfeng, WANG Peng, WANG Huajing et al. Significantly photo-thermochromic KNN-based “Smart Window” for sustainable optical data storage and anticounterfeiting[J]. Advanced Optical Materials, 9, 2100580(2021).
[63] ZHANG Diwei, ZHOU Wei, LIU Quanlin et al. CH3NH3PbBr3 perovskite nanocrystals encapsulated in lanthanide metal-organic framework as a photoluminescence converter for anti-counterfeiting[J]. ACS Applied Materials & Interfaces, 10, 27875-27884(2018).
[64] JIANG Wenjie, LIU Lan, WU Yueyue et al. A green-synthesized phosphorescent carbon dot composite for multilevel anti-counterfeiting[J]. Nanoscale Advances, 3, 4536-4540(2021).
[65] ZHAO Jianglin, LUO Qingying, RUAN Qin et al. Red/green tunable-emission carbon nanodots for smart visual precision pH sensing[J]. Chemistry of Materials, 33, 6091-6098(2021).
[66] FENG Qi, XIE Zhigang, ZHENG Min. Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom effect in boron-doped carbon dots[J]. Chemical Engineering Journal, 420, 127647(2021).
[67] LI Dongdong, MO Jianye, WANG Chong et al. Screen printing of upconversion NaYF4:Yb3+/Eu3+ with Li+ doped for anti-counterfeiting application[J]. Chinese Optics Letters, 18, 110501(2020).
[68] LIU Wenjing, ZHANG Wenjun, LIU Ruxin et al. Screen printing of multi-mode emissions NaYF4:Yb,Er(Tm)/NaYF4:Ce, Mn composite for anti-counterfeiting applications[J]. New Journal of Chemistry, 45, 9818-9828(2021).
[69] CUERRVA C C, ZIEBA M, SEBASTIAN V et al. Screen-printed nanoparticles as anti-counterfeiting tags[J]. Nanotechnology, 27, 095702(2016).
[70] LI Jingfang, XIA Diandong, GAO Min et al. Invisible luminescent inks and luminescent films based on lanthanides for anti-counterfeiting[J]. Inorganica Chimica Acta, 526, 120541(2021).
[71] LI Pengfei, ZENG Jinsong, WANG Bin et al. Waterborne fluorescent dual anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted with dialdehyde nano-fibrillated cellulose[J]. Carbohydrate Polymers, 247, 116721(2020).
[72] SHI Lifu, MENG Linghai, JIANG Feng et al. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns[J]. Advanced Functional Materials, 29, 1903648(2019).
[73] WEI Jianfei, MA Guocong, LIU Yunyu等. Preparation of blue fluorescent carbon dots and its application in detection and anti-counterfeiting[J]. Fine Chemicals, 38, 2233-2239(2021).
[74] KUMAR P, SINGH S, GUPTA B K. Future prospects of luminescent nanomaterials based security ink: from synthesis to anti-counterfeiting applications[J]. Nanoscale, 8, 14297-14340(2016).
[75] HU Weiting, LI Ting, LIU Xue et al. 1 550 nm pumped upconversion chromaticity modulation[J]. Journal of Alloys and Compounds, 818, 152933(2020).
[76] GUILLIU O, DAIGUEBONNE C, CALVEZ G et al. A long journey in lanthanide chemistry: From fundamental crystallogenesis studies to commercial anticounterfeiting taggants[J]. Accounts of Chemical Research, 49, 844-856(2016).
[77] LIU Ruxin, ZHANG Wenjun, LI Guojing et al. An ultraviolet excitation anti-counterfeiting material of Sb3+ doped Cs2ZrCl6 Vacancy-ordered double perovskite[J]. Inorganic Chemistry Frontiers, 8, 4035(2021).
[78] LIU Yang, HAN Fei, LI Fushan et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication[J]. Nature Communications, 10, 2409(2019).
[79] JIN Minkun, WU Yujian, ZHANG Zhiyu et al. Excitation wavelength-dependent multi-color emitting phosphor Ba2GdTaO6:Mn4+, Er3+ for application in anti-counterfeiting[J]. Optics and Laser Technology, 152, 108144(2022).
[80] HAN Wenjuan, WEN Xiaokun, DING Yadan et al. Ultraviolet emissive Ti3C2Tx MXene quantum dots for multiple anti-counterfeiting[J]. Applied Surface Science, 595, 153563(2022).
[81] JIA J, LU W, CUI S et al. Synthesis of multicolor luminescent adjustable carbon dots and their application in anti-counterfeiting[J]. Materials Today Chemistry, 25, 100972(2022).
[82] WANG Haiping, QIAN Xueren, AN Xianhui. Introducing lanthanide metal-organic framework and perovskite onto pulp fibers for fluorescent anti-counterfeiting and encryption[J]. Cellulose, 29, 1115-1127(2022).
Get Citation
Copy Citation Text
Baojiu CHEN, Xin CHEN, Li WANG, Yizhuo WANG, Lei LI, Sai XU. Progress in Luminescent Materials for Anti-counterfeiting Labels(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851504
Category: Special Issue for the 60th Anniversary of XIOPM of CAS, and the 50th Anniversary of the Acta Photonica Sinica Ⅱ
Received: May. 27, 2022
Accepted: Jul. 18, 2022
Published Online: Oct. 25, 2022
The Author Email: