Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 907(2023)
Recent Development on Ultra-Low Firing Technologies of Microwave Dielectric Ceramics
[1] [1] SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties[J]. Int Mater Rev, 2015, 60(7): 392-412.
[2] [2] REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks[J]. J Am Ceram Soc, 2006, 89(7): 2063-2072.
[3] [3] MIRSANEH M, REANEY I M, HAN Y, et al. Low sintering temperature high permittivity glass ceramic composites for dielectric loaded microwave antennas[J]. Adv Appl Ceram, 2011, 110(7): 387-393.
[4] [4] LIU B, HUANG Y H, BAFROOEI H B, et al. Effects of structural transition on microwave dielectric properties of Sr3(Ti1-xSnx)2O7 ceramics[J]. J Eur Ceram Soc, 2019, 39(15): 4794-4799.
[5] [5] PIRVARAM A, TAHERI-NASSAJ E, TAGHIPOUR-ARMAKI H, et al. Study on structure, microstructure and microwave dielectric characteristics of CaV2O6 and (Ca0.95M0.05)V2O6 (M=Zn, Ba) ceramics[J]. J Am Ceram Soc, 2019, 102(9): 5213-5222.
[6] [6] ZHANG X, FANG Z X, JIANG Y H, et al. Microwave dielectric properties of a low firing and temperature stable lithium magnesium tungstate (Li4MgWO6) ceramic with a rock-salt variant structure[J]. J Eur Ceram Soc, 2021, 41(16): 171-178.
[7] [7] YANG H Y, ZHANG S R, YANG H C, et al. Usage of P-V-L bond theory in studying the structural/property regulation of microwave dielectric ceramics: a review[J]. Inorg Chem Front, 2020, 7(23): 4711-4753.
[8] [8] GUO J, BAKER A L, GUO H Z, et al. Cold sintering process: A new era for ceramic packaging and microwave device development[J]. J Am Ceram Soc, 2017, 100(2): 669-677.
[9] [9] VARGHESE J, SIPONKOSKI T, NELO M, et al. Microwave dielectric properties of low-temperature sinterable alpha-MoO3[J]. J Eur Ceram Soc, 2018, 38(4): 1541-1547.
[10] [10] SEBASTIAN M T, WANG H, JANTUNEN H. Low temperature co-fired ceramics with ultra-low sintering temperature: A review[J]. Curr Opin Solid State Mater Sci, 2016, 20(3): 151-170.
[11] [11] HAO S Z, ZHOU D, HUSSAIN F, et al. Structure, spectral analysis and microwave dielectric properties of novel x(NaBi)0.5MoO4-(1-x) Bi2/3MoO4 (x=0.2-0.8) ceramics with low sintering temperatures[J]. J Eur Ceram Soc, 2020, 40(10): 3569-3576.
[12] [12] COBLE R L. Sintering crystalline solids. I. Intermediate and final state diffusion models[J]. J Appl Phys, 1961, 32(5): 787-792.
[13] [13] COBLE R L. Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts[J]. J Appl Phys, 1961, 32(5): 793-799.
[14] [14] KINGERY W D, BERG M. Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion[J]. J Appl Phys, 1955, 26(10): 1205-1212.
[15] [15] GUO J, GUO H Z, BAKER A L, et al. Cold sintering: A paradigm shift for processing and integration of ceramics[J]. Angew Chem Int Ed, 2016, 55(38): 11457-11461.
[18] [18] ZHOU D, PANG L X, QI Z M, et al. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal[J]. Sci Rep, 2014, 4:5980.
[19] [19] LI X M, ZHANG Y, GUO J, et al. Nonstoichiometric microwave dielectric ceramics (Na0.5-xBi0.5+x/3)0.5Ca0.5MoO4 with low sintering temperatures[J]. J Eur Ceram Soc, 2021, 41(14): 7029-7034.
[20] [20] XUE X, YUAN X F, MA R, et al. Temperature stable 0.35Ag2MoO4-0.65Ag0.5Bi0.5MoO4 microwave dielectric ceramics with ultra-low sintering temperatures[J]. J Eur Ceram Soc, 2019, 39(13): 3744-3748.
[21] [21] YUAN X F, XUE X, WANG H. Preparation of ultra-low temperature sintering ceramics with ultralow dielectric loss in Na2O-WO3 binary system[J]. J Am Ceram Soc, 2019, 102(7): 4014-4020.
[22] [22] ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature[J]. J Am Ceram Soc, 2011, 94(2): 348-350.
[23] [23] XIE H D, XI H H, CHEN C, et al. Microwave dielectric properties of two low temperature sintering ceramics in the PbO-WO3 binary system[J]. Ceram Int, 2015, 41(8): 10287-10292.
[24] [24] SASIDHARANPILLAI A, KIM C H, LEE C H, et al. Environmental friendly approach for the development of ultra-low firing Li2WO4 ceramic tapes[J]. ACS Sustain Chem Eng, 2018, 6(5): 6849-6855.
[25] [25] CHEN X Y, ZHANG W J, ZALINSKA B, et al. Low sintering temperature microwave dielectric ceramics and composites based on Bi2O3-B2O3[J]. J Am Ceram Soc, 2012, 95(10): 3207-3213.
[26] [26] OHASHI M, OGAWA H, KAN A, et al. Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic[J]. J Eur Ceram Soc, 2005, 25(12): 2877-2881.
[27] [27] ZHOU D, PANG L X, WANG D W, et al. High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates[J]. ACS Sustain Chem Eng, 2018, 6(8): 11138-11143.
[28] [28] MAEDA M, YAMAMURA T, IKEDA T. Dielectric characteristics of several complex oxide ceramics at microwave frequencies[J]. Jpn J Appl Phys, 1987, 26 (S2): 76-79.
[29] [29] UDOVIC M, VALANT M, SUVOROV D. Phase formation and dielectric characterization of the Bi2O3-TeO2 system prepared in an oxygen atmosphere[J]. J Am Ceram Soc, 2004, 87(4): 591-597.
[30] [30] NEELAKANTAN U A, KALATHIL S E, RATHEESH R. Structure and microwave dielectric properties of ultralow-temperature cofirable BaV2O6 ceramics[J]. Eur J Inorg Chem, 2015, 2015(2): 305-310.
[31] [31] KALATHIL S E, NEELAKANTAN U A, RATHEESH R. Microwave dielectric properties of ultralow-temperature cofirable Ba3V4O13 ceramics[J]. J Am Ceram Soc, 2014, 97(5): 1530-1533.
[32] [32] YAO G G, PEI C J, XU J G, et al. Microwave dielectric properties of CaV2O6 ceramics with low dielectric loss[J]. J Mater Sci-Mater Electron, 2015, 26(10): 7719-7722.
[33] [33] ZHOU D, RANDALL C A, WANG H, et al. Ultra-low firing high-k scheelite structures based on [(Li0.5Bi0.5)xBi1-x][MoxV1-x]O4 microwave dielectric ceramics [J]. J Am Ceram Soc, 2010, 93(8): 2147-2150.
[34] [34] GUO H H, ZHOU D, LIU W F, et al. Microwave dielectric properties of temperature-stable zircon-type (Bi, Ce)VO4 solid solution ceramics[J]. J Am Ceram Soc, 2020, 103(1): 423-431.
[35] [35] LI C C, YIN C Z, KHALIQ J, et al. Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances[J]. ACS Sustain Chem Eng, 2021, 9(43): 14461--14469.
[40] [40] GUO H Z, BAKER A, GUO J, et al. Cold sintering process: A novel technique for low-temperature ceramic processing of ferroelectrics[J]. J Am Ceram Soc, 2016, 99(11): 3489-3507.
[41] [41] MARIA J P, KANG X Y, FLOYD R D, et al. Cold sintering: Current status and prospects[J]. J Mater Res, 2017, 32(17): 3205-3218.
[42] [42] GUO J, ZHAO X T, DE BEAUVOIR T H, et al. Recent progress in applications of the cold sintering process for ceramic-polymer composites[J]. Adv Funct Mater, 2018, 28(39): 1801724.
[43] [43] GUO J, FLOYD R, LOWUM S, et al. Cold sintering: Progress, challenges, and future opportunities[J]. Annu Rev Mater Res, 2019, 49: 275-295.
[44] [44] HEIDARY D S B, LANAGAN M, RANDALL C A. Contrasting energy efficiency in various ceramic sintering processes[J]. J Eur Ceram Soc, 2018, 38(4): 1018-1029.
[45] [45] GONZALEZ-JULIAN J, NEUHAUS K, BERNEMANN M, et al. Unveiling the mechanisms of cold sintering of ZnO at 250 ℃ by varying applied stress and characterizing grain boundaries by Kelvin Probe Force Microscopy[J]. Acta Mater, 2018, 144: 116-128.
[46] [46] HAO J Y, GUO J, ZHAO E D, et al. Grain size effect on microwave dielectric properties of Na2WO4 ceramics prepared by cold sintering process[J]. Ceram Int, 2020, 46(17): 27193-27198.
[47] [47] WANG D W, ZHOU D, ZHANG S Y, et al. Cold-sintered temperature stable Na0.5Bi0.5MoO4-Li2MoO4 microwave composite ceramics[J]. ACS Sustain Chem Eng, 2018, 6(2): 2438-2444.
[48] [48] WANG D W, ZHANG S Y, ZHOU D, et al. Temperature stable cold sintered (Bi0.95Li0.05)(V0.9Mo0.1)O4-Na2Mo2O7 microwave dielectric composites[J]. Materials, 2019, 12(9):1370.
[49] [49] MA M T, SONG K X, JI Y P, et al. 5G microstrip patch antenna and microwave dielectric properties of cold sintered LiWVO6-K2MoO4 composite ceramics[J]. Ceram Int, 2021, 47(13): 19241-19246.
[50] [50] HAO J Y, GUO J, MA C S, et al. Cold sintering of Na2WO4 ceramics using a Na2WO4-2H2O chemistry[J]. J Eur Ceram Soc, 2021, 41(12): 6029-6034.
[51] [51] HAO J Y, GUO J, FU C L, et al. The effects of cold sintering parameters on the densification of Na2WO4 ceramics using Na2WO4 · 2H2O dry powders[J]. J Am Ceram Soc, 2022, 105(8): 5058-5068.
[53] [53] HONG W B, LI L, YAN H, et al. Cold sintering and microwave dielectric properties of dense HBO2-II ceramics[J]. J Am Ceram Soc, 2019, 102(10): 5934-5940.
[54] [54] WANG D W, CHEN J R, WANG G, et al. Cold sintered LiMgPO4 based composites for low temperature co-fired ceramic (LTCC) applications[J]. J Am Ceram Soc, 2020, 103(11): 6237-6244.
[55] [55] INDUJA I J, SEBASTIAN M T. Microwave dielectric properties of mineral sillimanite obtained by conventional and cold sintering process[J]. J Eur Ceram Soc, 2017, 37(5): 2143-2147.
[56] [56] INDUJA I J, SEBASTIAN M T. Microwave dielectric properties of cold sintered Al2O3-NaCl composite[J]. Mater Lett, 2018, 211: 55-57.
[57] [57] HONG W B, LI L, CAO M, et al. Plastic deformation and effects of water in room-temperature cold sintering of NaCl microwave dielectric ceramics[J]. J Am Ceram Soc, 2018, 101(9): 4038-4043.
[58] [58] SANTHA N, RAKHI M, SUBODH G. Fabrication of high quality factor cold sintered MgTiO3-NaCl microwave ceramic composites[J]. Mater Chem Phys, 2020, 255:123636.
[59] [59] SI M M, HAO J Y, ZHAO E D, et al. Preparation of zinc oxide/poly-ether-ether-ketone (PEEK) composites via the cold sintering process[J]. Acta Mater, 2021, 215:117036.
[60] [60] SI M M, GUO J, HAO J Y, et al. Cold sintered composites consisting of PEEK and metal oxides with improved electrical properties via the hybrid interfaces[J]. Compos B Eng, 2021, 226:109349.
[61] [61] GUO J, SI M M, ZHAO X T, et al. Altering interfacial properties through the integration of C60 into ZnO ceramic via cold sintering process[J]. Carbon, 2022, 190: 255-261.
[62] [62] LI Y Q, ZHENG M P, ZANG M Y, et al. Cold sintering co-firing of (Ca,Bi)(Mo,V)O4-PTFE composites in a single step[J]. J Am Ceram Soc, 2022, 105(10): 6262-6270.
[63] [63] GUO J, GUO H Z, HEIDARY D S B, et al. Semiconducting properties of cold sintered V2O5 ceramics and co-sintered V2O5-PEDOT: PSS composites[J]. J Eur Ceram Soc, 2017, 37(4): 1529-1534.
[64] [64] GUO J, LEGUM B, ANASORI B, et al. Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide[J]. Adv Mater, 2018, 30(32):1801846.
[65] [65] SEO J H, VERLINDE K, GUO J, et al. Cold sintering approach to fabrication of high rate performance binderless LiFePO4 cathode with high volumetric capacity[J]. Scripta Mater, 2018, 146: 267-271.
[66] [66] FAOURI S S, MOSTAED A, DEAN J S, et al. High quality factor cold sintered Li2MoO4-BaFe12O19 composites for microwave applications[J]. Acta Mater, 2019, 166: 202-207.
[67] [67] GUO J, PFEIFFENBERGER N, BEESE A, et al. Cold sintering Na2Mo2O7 ceramic with poly (ether imide) (PEI) polymer to realize high-performance composites and integrated multilayer circuits[J]. ACS Appl Nano Mater, 2018, 1(8): 3837-3844.
[68] [68] DE BEAUVOIR T H, DURSUN S, GAO L S, et al. New opportunities in metallization integration in cofired electroceramic multilayers by the cold sintering process[J]. ACS Appl Electro Mater, 2019, 1(7): 1198-1207.
[69] [69] GUO J, BERBANO S S, GUO H Z, et al. Cold sintering process of composites: Bridging the processing temperature gap of ceramic and polymer materials[J]. Adv Funct Mater, 2016, 26(39): 7115-7121.
[71] [71] BROSNAN K H, MESSING G L, AGRAWAL D K. Microwave sintering of alumina at 2.45 GHz [J]. J Am Ceram Soc, 2003, 86(8): 1307-1312.
[72] [72] BENAVENTE R, SALVADOR M D, PENARANDA-FOIX F L, et al. High thermal stability of microwave sintered low-r β-eucryptite materials[J]. Ceram Int, 2015, 41(10): 13817-13822.
[73] [73] KESHAVARZ M, EBADZADEH T, BANIJAMALI S. Preparation of forsterite/MBS (MgO-B2O3-SiO2) glass-ceramic composites via conventional and microwave assisted sintering routes for LTCC application[J]. Ceram Int, 2017, 43(12): 9259-9266.
[74] [74] SINDAM B, GOUD J P, RAJU K C J. Microwave assisted synthesis of Ba(Zn1/3Ta2/3)O3 nanoparticles[J]. Mater Today, 2016, 3(6): 2101-2106.
[75] [75] MARINEL S, CHOI D H, HEUGUET R, et al. Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes[J]. Ceram Int, 2013, 39(1): 299-306.
[76] [76] WANG X, LI L, HONG W B, et al. Preparation and microwave dielectric properties of BPO4 ceramics with ultra-low dielectric constant[J]. J Mater Sci-Mater Electron, 2021, 32(5): 6660-6667.
[77] [77] ZHANG X R, LIU C Y, LIU R, et al. Coordinating microwave dielectric and optical properties of transparent yttrium aluminum garnet ceramics by regulating spark plasma sintering parameters[J]. Mater Sci Eng B, 2020, 260:114628.
[78] [78] LIU F, LIU S J, CUI X J, et al. Ordered domains and microwave properties of sub-micron structured Ba(Zn1/3Ta2/3)O3 ceramics obtained by spark plasma sintering[J]. Materials, 2019, 12(4): 638.
[79] [79] FU P, WANG Z Y, LIN Z D, et al. The microwave dielectric properties of transparent ZnAl2O4 ceramics fabricated by spark plasma sintering[J]. J Mater Sci-Mater Electron, 2017, 28(13): 9589-9595.
[80] [80] WU J M, HUANG H L. Microwave properties of zinc, barium and lead borosilicate glasses[J]. J. Non-Cryst Solids, 1999, 260(1/2): 116-124.
[81] [81] COLOGNA M, FRANCIS J S C, RAJ R. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping[J]. J Eur Ceram Soc, 2011, 31(15): 2827-2837.
[82] [82] M'PEKO J C, FRANCIS J S C, RAJ R. Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity[J]. J Eur Ceram Soc, 2014, 34(15): 3655-3660.
[83] [83] ZAPATA-SOLVAS E, BONILLA S, WILSHAW P R, et al. Preliminary investigation of flash sintering of SiC[J]. J Eur Ceram Soc, 2013, 33(13/14): 2811--2816.
[84] [84] GRASSO S, SAUNDERS T, PORWAL H, et al. Flash spark plasma sintering (FSPS) of pure ZrB2[J]. J Am Ceram Soc, 2014, 97(8): 2405-2408.
[85] [85] ROSSI R C, Fulrath RM. Final stage densification in vacuum hot-pressing of alumina[J]. J Am Ceram Soc, 1965, 48(11): 558-564.
[86] [86] WU W W, ZHANG G J, KAN Y M, et al. Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1 800 ℃[J]. J Am Ceram Soc, 2006, 89(9): 2967-2969.
[87] [87] WANG W M, FU Z Y, WANG H, et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics[J]. J Eur Ceram Soc, 2002, 22(7): 1045-1049.
[88] [88] ZHANG G J, DENG Z Y, KONDO N, et al. Reactive hot pressing of ZrB2-SiC composites[J]. J Am Ceram Soc, 2000, 83(9): 2330-2332.
[89] [89] JAEGER R E, EGERTON L. Hot pressing of potassium-sodium niobates[J]. J Am Ceram Soc, 1962, 45(5): 209-213.
[90] [90] NDAYISHIMIYE A, LARGETEAU A, MORNET S, et al. Hydrothermal sintering for densification of silica. Evidence for the Role of Water[J]. J Eur Ceram Soc, 2018, 38(4): 1860-1870.
[91] [91] YANAGISAWA K, NISHIOKA M, IOKU K, et al. Densification of silica gels by hydrothermal hot-pressing[J]. J Mater Sci Lett, 1993, 12(14): 1073-1075.
[92] [92] YAMASAKI N, KAI T, NISHIOKA M, et al. Porous hydroxyapatite ceramics prepared by hydrothermal hot-pressing[J]. J Mater Sci Lett, 1990, 9(10): 1150-1151.
[93] [93] YANAGISAWA K, IOKU K, YAMASAKI N. Formation of anatase porous ceramics by hydrothermal hot-pressing of amorphous titania spheres[J]. J Am Ceram Soc, 1997, 80(5): 1303-1306.
[94] [94] YAMASAKI N, WEIPING T, JIAJUN K. Low-temperature sintering of calcium carbonate by a hydrothermal hot-pressing technique[J]. J Mater Sci Lett, 1992, 11(13): 934-936.
[95] [95] NDAYISHIMIYE A, LARGETEAU A, PRAKASAM M, et al. Low temperature hydrothermal sintering process for the quasi-complete densification of nanometric alpha-quartz[J]. Scr Mater, 2018, 145: 118-121
Get Citation
Copy Citation Text
LI Xiaomeng, XUE Xian, WANG Hong, GUO Jing. Recent Development on Ultra-Low Firing Technologies of Microwave Dielectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 907
Special Issue:
Received: Aug. 28, 2022
Accepted: --
Published Online: Apr. 15, 2023
The Author Email: Xiaomeng LI (2718953732@qq.com)
CSTR:32186.14.